Question

If n is a square-free integer, prove that an abelian group of order n is cyclic.

If n is a square-free integer, prove that an abelian group of order n is cyclic.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let n be a positive integer. Show that every abelian group of order n is cyclic...
Let n be a positive integer. Show that every abelian group of order n is cyclic if and only if n is not divisible by the square of any prime.
prove that if G is a cyclic group of order n, then for all a in...
prove that if G is a cyclic group of order n, then for all a in G, a^n=e.
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a...
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a positive integer. How many subgroups of order m does G have? Prove your assertion.
Prove that any group of order 9 is abelian.
Prove that any group of order 9 is abelian.
LetG be a group (not necessarily an Abelian group) of order 425. Prove that G must...
LetG be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5.
a) Prove: If n is the square of some integer, then n /≡ 3 (mod 4)....
a) Prove: If n is the square of some integer, then n /≡ 3 (mod 4). (/≡ means not congruent to) b) Prove: No integer in the sequence 11, 111, 1111, 11111, 111111, . . . is the square of an integer.
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G...
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5. Note, Sylow Theorem is above us so we can't use it. We're up to Finite Orders. Thank you.
is it cyclic? Consider the abelian group (Z,∗) under the operation a ∗ b = a...
is it cyclic? Consider the abelian group (Z,∗) under the operation a ∗ b = a + b − 1 for all a, b ∈ Z.
prove that a factor group of a cyclic group is cyclic. provide explanations.
prove that a factor group of a cyclic group is cyclic. provide explanations.
Let a be an element of order n in a group and d = gcd(n,k) where...
Let a be an element of order n in a group and d = gcd(n,k) where k is a positive integer. a) Prove that <a^k> = <a^d> b) Prove that |a^k| = n/d c) Use the parts you proved above to find all the cyclic subgroups and their orders when |a| = 100.