Question

Consider the following set S = {(a,b)|a,b ∈ Z,b 6= 0} where Z denotes the integers....

Consider the following set S = {(a,b)|a,b ∈ Z,b 6= 0} where Z denotes the integers. Show that the relation (a,b)R(c,d) ↔ ad = bc on S is an equivalence relation. Give the equivalence class [(1,2)]. What can an equivalence class be associated with?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Recall from class that we defined the set of integers by defining the equivalence relation ∼...
Recall from class that we defined the set of integers by defining the equivalence relation ∼ on N × N by (a, b) ∼ (c, d) =⇒ a + d = c + b, and then took the integers to be equivalence classes for this relation, i.e. Z = [(a, b)]∼ | (a, b) ∈ N × N . We then proceeded to define 0Z = [(0, 0)]∼, 1Z = [(1, 0)]∼, − [(a, b)]∼ = [(b, a)]∼, [(a, b)]∼...
Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}. Let...
Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}. Let (a, b), (c, d) ∈ Q. Show that (a, b) ∼ (c, d) if and only if ad − bc = 0 defines an equivalence relation on Q.
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z...
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z is the whole integers.) 1) Give two real numbers that are in the same equivalence class. 2) Give two real numbers that are not in the same equivalence class. 3) Prove that this relation is an equivalence relation.
Let S be the set of all functions from Z to Z, and consider the relation...
Let S be the set of all functions from Z to Z, and consider the relation on S: R = {(f,g) : f(0) + g(0) = 0}. Determine whether R is (a) reflexive; (b) symmetric; (c) transitive; (d) an equivalence relation.
Consider the following relation ∼ on the set of integers a ∼ b ⇐⇒ b 2...
Consider the following relation ∼ on the set of integers a ∼ b ⇐⇒ b 2 − a 2 is divisible by 3 Prove that this is an equivalence relation. List all equivalence classes.
1. Consider the relations R = {(x,y),(y,z),(z,x)} and S = {(y,x),(z,y),(x,z)} on {x, y, z}. a)...
1. Consider the relations R = {(x,y),(y,z),(z,x)} and S = {(y,x),(z,y),(x,z)} on {x, y, z}. a) Explain why R is not an equivalence relation. b) Explain why S is not an equivalence relation. c) Find S ◦ R. d) Show that S ◦ R is an equivalence relation. e) What are the equivalence classes of S ◦ R?
Define a relation on N x N by (a, b)R(c, d) iff ad=bc a. Show that...
Define a relation on N x N by (a, b)R(c, d) iff ad=bc a. Show that R is an equivalence relation. b. Find the equivalence class E(1, 2)
Let S = {A, B, C, D, E, F, G, H, I, J} be the set...
Let S = {A, B, C, D, E, F, G, H, I, J} be the set consisting of the following elements: A = N, B = 2N , C = 2P(N) , D = [0, 1), E = ∅, F = Z × Z, G = {x ∈ N|x 2 + x < 2}, H = { 2 n 3 k |n, k ∈ N}, I = R \ Q, J = R. Consider the relation ∼ on S given...
Consider the following relation on the set Z: xRy ? x2 + y is even. For...
Consider the following relation on the set Z: xRy ? x2 + y is even. For each question below, if your answer is "yes", then prove it, if your answer is "no", then show a counterexample. (i) Is R reflexive? (ii) Is R symmetric? (iii) Is R antisymmetric? (iv) Is R transitive? (v) Is R an equivalence relation? If it is, then describe the equivalence classes of R. How many equivalence classes are there?
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT