Question

Let V={f∈C1([−1,1])|f(1) =f(−1)}, then〈f, g〉=∫(f g+f'g′)dx (from -1 to 1) is an inner product on V...

Let V={f∈C1([−1,1])|f(1) =f(−1)}, then〈f, g〉=∫(f g+f'g′)dx (from -1 to 1) is an inner product on V (you do not have to verify this).

Under this inner product, prove that:

{x2}⊥={f∈V | ∫(x^2−2)f(x)dx= 0} (from -1 to 1)

Homework Answers

Answer #1

Please feel free to ask for any query.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1,...
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1, x2) ? R^2. Show that (x2, ?x1) is orthogonal to v. b. Find all vectors (x, y, z) ? R^3 that are orthogonal (with the Euclidean inner product, i.e. dot product) to both (1, 3, ?2) and (2, 7, 5). C.Let V be an inner product space. Suppose u is orthogonal to both v and w. Prove that for any scalars c and d,...
T/ F : Let V be an inner product space with orthogonal basis B = {v1,...
T/ F : Let V be an inner product space with orthogonal basis B = {v1, . . . , vn}. Let [v]B = (1, 2, 2, 0, . . . , 0). Then ||v|| = 3. The ans is F , but I don't understand why. Please explain.
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) ,...
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) , for all u,v load to V. hint : you may use the Cauchy-Schwars inquality: |{u,v}|,= ||u||*||v||.
Let B={u1,...un} be an orthonormal basis for inner product space V and v b any vector...
Let B={u1,...un} be an orthonormal basis for inner product space V and v b any vector in V. Prove that v =c1u1 + c2u2 +....+cnun where c1=<v,u1>, c2=<v,u2>,...,cn=<v,un>
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉 ∈ R for x, y ∈ V . (a) (3points) Let λ∈R with λ>0. Show that 〈x,y〉′ = λ〈x,y〉, for x,y ∈ V, (b) (2 points) Let T : V → V be a linear operator, such that 〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V. Show that T is one-to-one. (c) (2 points) Recall that the norm of a vector x ∈ V...
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T...
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T 〉 = 〈Sv1, T v1〉 + . . . + 〈Svn, T vn〉 for S,T ∈ L(V,W) is an inner product on L(V,W). Let S ∈ L(R^2) be given by S(x1, x2) = (x1 + x2, x2) and let I ∈ L(R^2) be the identity operator. Using the inner product defined in problem 1 for the standard basis and the dot product, compute 〈S,...
A2. Let v be a fixed vector in an inner product space V. Let W be...
A2. Let v be a fixed vector in an inner product space V. Let W be the subset of V consisting of all vectors in V that are orthogonal to v. In set language, W = { w LaTeX: \in ∈V: <w, v> = 0}. Show that W is a subspace of V. Then, if V = R3, v = (1, 1, 1), and the inner product is the usual dot product, find a basis for W.
Let f(u, v) = u TMv be a bilinear function. Is f an inner product? explain...
Let f(u, v) = u TMv be a bilinear function. Is f an inner product? explain why! M = 2 2 2 2
Let f(x)=−6, g(x)=−4x+4 and h(x)=−9x2. Consider the inner product 〈p,q〉=∫40p(x)q(x)dx in the vector space C0[0,4] of...
Let f(x)=−6, g(x)=−4x+4 and h(x)=−9x2. Consider the inner product 〈p,q〉=∫40p(x)q(x)dx in the vector space C0[0,4] of continuous functions on the domain [0,4]. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of C0[0,4] spanned by the functions f(x), g(x), and h(x).
Let V be an inner product space. Prove that if w⃗ is orthogonal to each of...
Let V be an inner product space. Prove that if w⃗ is orthogonal to each of the vectors in the set S = {⃗v1, ⃗v2, . . . , ⃗vm}, then w⃗ is also orthogonal to each of the vectors in the subspace W = SpanS of V .