Question

Let S1 and S2 be any two equivalence relations on some set A, where A ≠...

Let S1 and S2 be any two equivalence relations on some set A, where A ≠ ∅. Recall that S1 and S2 are each a subset of A×A.

Prove or disprove (all three):

The relation S defined by S=S1∪S2 is

(a) reflexive

(b) symmetric

(c) transitive

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S1 and S2 be any two equivalence relations on some set A, where A ≠...
Let S1 and S2 be any two equivalence relations on some set A, where A ≠ ∅. Recall that S1 and S2 are each a subset of A×A. Prove or disprove (all three): The relation S defined by S=S1∪S2 is (a) reflexive (b) symmetric (c) transitive
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
a) Let R be an equivalence relation defined on some set A. Prove using induction that...
a) Let R be an equivalence relation defined on some set A. Prove using induction that R^n is also an equivalence relation. Note: In order to prove transitivity, you may use the fact that R is transitive if and only if R^n⊆R for ever positive integer ​n b) Prove or disprove that a partial order cannot have a cycle.
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Let R1 and R2 be equivalence relations on a set A. (a) Must R1∪R2 be an...
Let R1 and R2 be equivalence relations on a set A. (a) Must R1∪R2 be an equivalence relation? (b) Must R1∩R2 be an equivalence relation? (c) Must R1⊕R2 be an equivalence relation?[⊕is the symmetric difference:x∈A⊕B if and only if x∈A,x∈B, and x /∈A∩B.]
​​​​​​ For each of the following relations on the set of all integers, determine whether the...
​​​​​​ For each of the following relations on the set of all integers, determine whether the relation is reflexive, symmetric, and/or transitive: (?, ?) ∈ ? if and only if ? < ?. (?, ?) ∈ ? if and only ?? ≥ 1. (?, ?) ∈ ? if and only ? = −?. (?, ?) ∈ ? if and only ? = |?|.
6. Let S be a finite set and let P(S) denote the set of all subsets...
6. Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A ⊆ B. (a) Is this relation reflexive? Explain your reasoning. (b) Is this relation symmetric? Explain your reasoning. (c) Is this relation transitive? Explain your reasoning.
For Problems #5 – #9, you willl either be asked to prove a statement or disprove...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove a statement, or decide if a statement is true or false, then prove or disprove the statement. Prove statements using only the definitions. DO NOT use any set identities or any prior results whatsoever. Disprove false statements by giving counterexample and explaining precisely why your counterexample disproves the claim. ********************************************************************************************************* (5) (12pts) Consider the < relation defined on R as usual, where x <...
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t...
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t and z be elements of Q. then t R z if and only if t = (z+1) * n for some integer n.
Let us say that two integers are near to one another provided their difference is 2...
Let us say that two integers are near to one another provided their difference is 2 or smaller (i.e., the numbers are at most 2 apart). For example, 3 is near to 5, 10 is near to 9, but 4 is not near to 8. Let R stand for this is-near-to relation. (a) Write down R as a set of ordered pairs. Your answer should look like this: R = {(x, y) : . . .}. (b) Prove or disprove:...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT