Question

Solve the 2nd Order Differential Equation using METHOD OF REDUCTION Please don't skip steps! (x-1)y"-xy'+y=0 x>1...

Solve the 2nd Order Differential Equation using METHOD OF REDUCTION

Please don't skip steps!

(x-1)y"-xy'+y=0 x>1 y1(x)=x

My professor is getting y2(x)=e^x and I don't understand how!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the 2nd Order Differential Equation using METHOD OF REDUCTION Please don't skip steps! (x-1)y"-xy'+y=0 x>1...
Solve the 2nd Order Differential Equation using METHOD OF REDUCTION Please don't skip steps! (x-1)y"-xy'+y=0 x>1 y1(x)=x
Consider the differential equation x2y''+xy'-y=0, x>0. a. Verify that y(x)=x is a solution. b. Find a...
Consider the differential equation x2y''+xy'-y=0, x>0. a. Verify that y(x)=x is a solution. b. Find a second linearly independent solution using the method of reduction of order. [Please use y2(x) = v(x)y1(x)]
Follow the steps below to use the method of reduction of order to find a second...
Follow the steps below to use the method of reduction of order to find a second solution y2 given the following differential equation and y1, which solves the given homogeneous equation: xy" + y' = 0; y1 = ln(x) Step #1: Let y2 = uy1, for u = u(x), and find y'2 and y"2. Step #2: Plug y'2 and y"2 into the differential equation and simplify. Step #3: Use w = u' to transform your previous answer into a linear...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order,...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order, to find a second solution dx **Please do not solve this via the formula--please use the REDUCTION METHOD ONLY. y2(x)= ?? Given: y'' + 2y' + y = 0;    y1 = xe−x
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' + 100y = 0; y1 = cos 10x I've gotten to the point all the way to where y2 = u y1, but my integral is wrong for some reason This was my answer y2= c1((sin(20x)+20x)cos10x)/40 + c2(cos(10x))
Solve the following 2nd Order differential equation and find y(x): y'' + 2y' +y = x...
Solve the following 2nd Order differential equation and find y(x): y'' + 2y' +y = x + e-x y(0) = 0, y'(0) = 0.
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx        (5) as instructed, to find a second solution y2(x). y'' + 64y = 0;    y1 = cos(8x) y2 =
Solve the following differential equations through order reduction. (a) xy′y′′−3ln(x)((y′)2−1)=0. (b) y′′−2ln(1−x)y′=x.
Solve the following differential equations through order reduction. (a) xy′y′′−3ln(x)((y′)2−1)=0. (b) y′′−2ln(1−x)y′=x.
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x)       dx (5) as instructed, to find a second solution y2(x). x2y'' -11xy' + 36y = 0; y1 = x6 y2 =