Question

Let G be a digraph with 2 or more vertices which is strongly connected and in...

Let G be a digraph with 2 or more vertices which is strongly connected and in which every node has indegree 1 and outdegree 1. Prove that G is a directed cycle.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove or disprove the claim that a directed connected graph is strongly connected if every node...
Prove or disprove the claim that a directed connected graph is strongly connected if every node in the graph has at least one incoming edge and at least one outgoing edge.
Let G be a connected planar graph with 3 or more vertices which is drawn in...
Let G be a connected planar graph with 3 or more vertices which is drawn in the plane. Let ν, ε, and f be as usual. a) Use P i fi = 2ε to show that f ≤ 2ε 3 . b) Prove that ε ≤ 3ν − 6. c) Use b) to show that K5 is not planar.
Let G be a simple graph with n(G) > 2. Prove that G is 2-connected iff...
Let G be a simple graph with n(G) > 2. Prove that G is 2-connected iff for every set of 3 distinct vertices, a, b and c, there is an a,c-path that contains b.
Let G be a connected simple graph with n vertices and m edges. Prove that G...
Let G be a connected simple graph with n vertices and m edges. Prove that G contains at least m−n+ 1 different subgraphs which are polygons (=circuits). Note: Different polygons can have edges in common. For instance, a square with a diagonal edge has three different polygons (the square and two different triangles) even though every pair of polygons have at least one edge in common.
Formal proof structure, please A digraph is Eulerian if and only if it is strongly connected...
Formal proof structure, please A digraph is Eulerian if and only if it is strongly connected and, for every vertex, the indegree equals the outdegree. You may use the following fact in your proof: Lemma: Let C be a directed circuit that is a subgraph of some larger directed graph. Then, for any vertex v in V(C), if we count only those arcs in E(C) the out-degree of v is equal to the in-degree of v.
Let G be a directed graph. In class, we saw an algorithm that uses the information...
Let G be a directed graph. In class, we saw an algorithm that uses the information obtained from a DFS to determine the strongly connected components of G. Make an argument for why using instead BFS will not work. Namely, focus on why the order in which we visit vertices in a BFS does not give us any information about the strongly connected component structure in G (note a BFS does not label vertices with pre and post values, so...
(a) Let L be a minimum edge-cut in a connected graph G with at least two...
(a) Let L be a minimum edge-cut in a connected graph G with at least two vertices. Prove that G − L has exactly two components. (b) Let G an eulerian graph. Prove that λ(G) is even.
Suppose we are going to color the vertices of a connected planar simple graph such that...
Suppose we are going to color the vertices of a connected planar simple graph such that no two adjacent vertices are with the same color. (a) Prove that if G is a connected planar simple graph, then G has a vertex of degree at most five. (b) Prove that every connected planar simple graph can be colored using six or fewer colors.
Let G be an undirected graph with n vertices and m edges. Use a contradiction argument...
Let G be an undirected graph with n vertices and m edges. Use a contradiction argument to prove that if m<n−1, then G is not connected
Exercise 10.5.4: Edge connectivity between two vertices. Two vertices v and w in a graph G...
Exercise 10.5.4: Edge connectivity between two vertices. Two vertices v and w in a graph G are said to be 2-edge-connected if the removal of any edge in the graph leaves v and w in the same connected component. (a) Prove that G is 2-edge-connected if every pair of vertices in G are 2-edge-connected.