Question

Remember that the DOMAIN is INTEGERS (....,-2,-1,0,1,2,3,4.......) and the TARGET is POSITIVE INTEGERS (1,2,3,4,.....) . Give...

Remember that the DOMAIN is INTEGERS (....,-2,-1,0,1,2,3,4.......) and the TARGET is POSITIVE INTEGERS (1,2,3,4,.....) .

Give explanation and proofing for each .

Find a function whose domain is the set of all integers and whose target is the set of all positive integers that satisfies each set of properties.

(a) Neither one-to-one, nor onto.

(b) One-to-one, but not onto.

(c) Onto, but not one-to-one.

(d) One-to-one and onto.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A = {1, 2, 3, 4, 5, 6}. In each of the following, give an...
Let A = {1, 2, 3, 4, 5, 6}. In each of the following, give an example of a function f: A -> A with the indicated properties, or explain why no such function exists. (a) f is bijective, but is not the identity function f(x) = x. (b) f is neither one-to-one nor onto. (c) f is one-to-one, but not onto. (d) f is onto, but not one-to-one.
For each problem below, either give an example of a function satisfying the give conditions, or...
For each problem below, either give an example of a function satisfying the give conditions, or explain why no such function exists. (a) An injective function f:{1,2,3,4,5}→{1,2,3,4} (b) A surjective function f:{1,2,3,4,5}→{1,2,3,4} (c) A bijection f:N→E, where E is the set of all positive even integers (d) A function f:N→E that is surjective but not injective (e) A function f:N→E that is injective but not surjective
Consider the set {1,2,3,4}. a) make a list of all samples of size 2 that can...
Consider the set {1,2,3,4}. a) make a list of all samples of size 2 that can be drawn from this set of integers( Sample with replacement; that is, the first number is drawn, observed, and then replaced [returned to the sample set] before the next drawing) b) construct the sampling distribution of sample means for samples of size 2 selected from this set. Provide the distribution both in the form of a table and histogram. c) Find μX and σX
In each part below, sketch a graph of a function whose domain is [0, 4] that...
In each part below, sketch a graph of a function whose domain is [0, 4] that has the desired property. No justification is needed in any part. (a) f(x) has an absolute maximum and absolute minimum on [0, 4]. (b) g(x) has neither an absolute maximum nor an absolute minimum on [0, 4]. (c) h(x) has exactly two local minima and one local maximum on [0, 4]. (d) k(x) has one inflection point and no local extrema on [0, 4].
f(x)=5x^(2/3)-2x^(5/3) a. Give the domain of f b. Find the critical numbers of f c. Create...
f(x)=5x^(2/3)-2x^(5/3) a. Give the domain of f b. Find the critical numbers of f c. Create a number line to determine the intervals on which f is increasing and decreasing. d. Use the First Derivative Test to determine whether each critical point corresponds to a relative maximum, minimum, or neither.
1. Let A = {1,2,3,4} and let F be the set of all functions f from...
1. Let A = {1,2,3,4} and let F be the set of all functions f from A to A. Prove or disprove each of the following statements. (a)For all functions f, g, h∈F, if f◦g=f◦h then g=h. (b)For all functions f, g, h∈F, iff◦g=f◦h and f is one-to-one then g=h. (c) For all functions f, g, h ∈ F , if g ◦ f = h ◦ f then g = h. (d) For all functions f, g, h ∈...
Discrete Mathematics (a) Let P(x) be the predicate “−10 < x < 10” with domain Z+...
Discrete Mathematics (a) Let P(x) be the predicate “−10 < x < 10” with domain Z+ (the set of all positive integers). Find the truth set of P(x). (b) Rewrite the statement Everybody trusts somebody in formal language using the quantifiers ∀ and ∃, the variables x and y, and a predicate P(x,y) that you must define. (c) Write the negation of the statement in (b) both formally and informally.
2. There is a famous problem in computation called Subset Sum: Given a set S of...
2. There is a famous problem in computation called Subset Sum: Given a set S of n integers S = {a1, a2, a3, · · · , an} and a target value T, is it possible to find a subset of S that adds up to T? Consider the following example: S = {−17, −11, 22, 59} and the target is T = 65. (a) What are all the possible subsets I can make with S = {−17, −11, 22,...
For each problem, say if the given statement is True or False. Give a short justification...
For each problem, say if the given statement is True or False. Give a short justification if needed. Let f : R + → R + be a function from the positive real numbers to the positive real numbers, such that f(x) = x for all positive irrational x, and f(x) = 2x for all positive rational x. a) f is surjective (i.e. f is onto). b) f is injective (i.e. f is one-to-one). c) f is a bijection.
Graph: f(x)= 2 Find (a) The domain of f. (b) All asymptotes (write the equations) (c)...
Graph: f(x)= 2 Find (a) The domain of f. (b) All asymptotes (write the equations) (c) X- intercept(s), Y- intercept. Write them as ordered pairs. (d) Graph the function. Include asymptotes