Question

Let a, b, c, m be integers with m > 0. Prove the following: (a) ”a...

Let a, b, c, m be integers with m > 0. Prove the following: (a) ”a ≡ 0 (mod 2) if and only if a is even” and ”a ≡ 1 (mod 2) if and only if a is odd”. (b) a ≡ b (mod m) if and only if a − b ≡ 0 (mod m) (c) a ≡ b (mod m) if and only if (a mod m) = (b mod m). Recall from Definition 8.10 that (a mod m) denotes the remainder when dividing a by m. (d) a ≡ b (mod 2) if and only if a and b have the same parity.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove: Let a and b be integers. Prove that integers a and b are both even...
Prove: Let a and b be integers. Prove that integers a and b are both even or odd if and only if 2/(a-b)
Let a, b be integers with not both 0. Prove that hcf(a, b) is the smallest...
Let a, b be integers with not both 0. Prove that hcf(a, b) is the smallest positive integer m of the form ra + sb where r and s are integers. Hint: Prove hcf(a, b) | m and then use the minimality condition to prove that m | hcf(a, b).
Exercise 2.5.1: Proofs by cases. Prove each statement. Give some explanation of your answer (b) If...
Exercise 2.5.1: Proofs by cases. Prove each statement. Give some explanation of your answer (b) If x and y are real numbers, then max(x, y) + min(x, y) = x + y. (c) If integers x and y have the same parity, then x + y is even. The parity of a number tells whether the number is odd or even. If x and y have the same parity, they are either both even or both odd. (d) For any...
Let a, b, and c be integers such that a divides b and a divides c....
Let a, b, and c be integers such that a divides b and a divides c. 1. State formally what it means for a divides c using the definition of divides 2. Prove, using the definition, that a divides bc.
Prove by contradiction: Let a and b be integers. Show that if is odd, then a...
Prove by contradiction: Let a and b be integers. Show that if is odd, then a is odd and b is odd. a) State the negation of the above implication. b) Disprove the negation and complete your proof.
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove...
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove that C1 is a subgroup of Z × Z. (b) Let n ≥ 2 be an integer, and let Cn = {(a, b) | a ≡ b( mod n)}. Prove that Cn is a subgroup of Z × Z. (c) Prove that every proper subgroup of Z × Z that contains C1 has the form Cn for some positive integer n.
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Let a,b ∈ Z. Prove that a−b is even if and only if x and y...
Let a,b ∈ Z. Prove that a−b is even if and only if x and y are of the same parity.
Prove by contradiction that: For all integers a and b, if a is even and b...
Prove by contradiction that: For all integers a and b, if a is even and b is odd, then 4 does not divide (a^2+ 2b^2).
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT