Question

Given 2y′+1.7y=5x, y(0)= 3, What is the value of y″(3) using Euler's method and a step...

Given 2y′+1.7y=5x, y(0)= 3,

What is the value of y″(3) using Euler's method and a step size of h=1.5

Keep 4 decimal places

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given 2y' +1.7y = 5x, y(0)= 2.1, What is the value of y(3) using Euler's method...
Given 2y' +1.7y = 5x, y(0)= 2.1, What is the value of y(3) using Euler's method and a step size of h=1.5 Keep 4 decimal places
Given 2y' + 2y = 5x, y(0) = 3.5, what is the value of y(3) using...
Given 2y' + 2y = 5x, y(0) = 3.5, what is the value of y(3) using Midpoint method and a step size of h=1.5 Keep 4 decimal places.
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to...
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to estimate: y(0.1) = y(0.2) =
Use Euler's Method with step size 0.12 to approximate y (0.48) for the solution of the...
Use Euler's Method with step size 0.12 to approximate y (0.48) for the solution of the initial value problem   y ′ = x + y, and y (0)= 1.2 What is y (0.48)? (Keep four decimal places.)
Use Euler's method with step size 0.2 to estimate y(3), where y(x) is the solution of...
Use Euler's method with step size 0.2 to estimate y(3), where y(x) is the solution of the initial-value problem y' = 3 − 3xy, y(2) = 0. (Round your answer to four decimal places.) y(3) =
a)Program a calculator or computer to use Euler's method to compute y(1), where y(x) is the...
a)Program a calculator or computer to use Euler's method to compute y(1), where y(x) is the solution of the given initial-value problem. (Give all answers to four decimal places.) dy dx + 3x2y = 9x2, y(0) = 4 h = 1     y(1) = h = 0.1     y(1) = h = 0.01     y(1) = h = 0.001     y(1) = (b) Verify that y = 3 + e−x3 is the exact solution of the differential equation. y = 3 + e−x3      ⇒     y'...
Use Euler's method with step size 0.5 to compute the approximate y-values y1 ≈ y(0.5), y2...
Use Euler's method with step size 0.5 to compute the approximate y-values y1 ≈ y(0.5), y2 ≈ y(1), y3 ≈ y(1.5), and y4 ≈ y(2) of the solution of the initial-value problem y′ = 1 + 2x − 2y,    y(0)=1. y1 = y2 = y3 = y4 =
Use​ Euler's method with step size h=0.2 to approximate the solution to the initial value problem...
Use​ Euler's method with step size h=0.2 to approximate the solution to the initial value problem at the points x=4.2 4.4 4.6 4.8 round to two decimal y'=3/x(y^2+y), y(4)=1
Use Euler's method to approximate y(0.7), where y(x) is the solution of the initial-value problem y''...
Use Euler's method to approximate y(0.7), where y(x) is the solution of the initial-value problem y'' − (2x + 1)y = 1, y(0) = 3, y'(0) = 1. First use one step with h = 0.7. (Round your answer to two decimal places.) y(0.7) = ? Then repeat the calculations using two steps with h = 0.35. (Round your answers to two decimal places.) y(0.35) = ? y(0.7) =?
Use Euler's method with step size 0.2 to estimate y(0.6) where y(x) is the solution to...
Use Euler's method with step size 0.2 to estimate y(0.6) where y(x) is the solution to the initial value problem y' = y+x^2, y(0) = 3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT