Question

Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in...

Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in comlex plane) for the equation f(x) = 0 are distinct. Prove that there exist infinitely many positive integers n such that f(n) is not a perfect square. Could you explain it in number theory instead of some deep math like sigel theorem

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in...
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in comlex plane) for the equation f(x) = 0 are distinct. Prove that there exist infinitely many positive integers n such that f(n) is not a perfect square.
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime:...
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime: there exist infinitely many positive integers n such that p | f(n)} is infinite.
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also...
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also a polynomial in Z[x]. Let R be the following subset of Z[x]: R = {f(x) ∈ Z[x] | f ' (0) = 0}. (a) Prove that R is a subring of Z[x]. (b) Prove that R is not an ideal of Z[x].
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree...
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree p whose Galois group is the dihedral group D_2p of a regular p-gon. Prove that f (x) has either all real roots or precisely one real root.
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... +...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... + anx^n: ai in Z[x],a0 = 5n}, that is, the set of all polynomials where the constant coefficient is a multiple of 5. You can assume that I is an ideal of Z[x]. a. What is the simplest form of an element in the quotient ring z[x] / I? b. Explicitly give the elements in Z[x] / I. c. Prove that I is not a...
Let f: Z→Z be the functon defined by f(x)=x+1. Prove that f is a permutation of...
Let f: Z→Z be the functon defined by f(x)=x+1. Prove that f is a permutation of the set of integers. Let g be the permutation (1 2 4 8 16 32). Compute fgf−1.
Problem 10. Let F = <y, z − x, 0> and let S be the surface...
Problem 10. Let F = <y, z − x, 0> and let S be the surface z = 4 − x^2 − y^2 for z ≥ 0, oriented by outward-pointing normal vectors. a. Calculate curl(F). b. Calculate Z Z S curl(F) · dS directly, i.e., evaluate it as a surface integral. c. Calculate Z Z S curl(F) · dS using Stokes’ Theorem, i.e., evaluate instead the line integral I ∂S F · ds.
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all...
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all real numbers a. In this case prove that f(x) and g(x) have exactly the same coefficients. [Hint: Consider the polynomial h(x) = f(x) − g(x). If h(x) has at least one nonzero coefficient then the equation h(x) = 0 has finitely many solutions.]
Let f(x) be a polynomial and let r be a root of f(x). If x_1 is...
Let f(x) be a polynomial and let r be a root of f(x). If x_1 is sufficiently close to r then x_2 = i(x_1) is closer, x_3 = i(x_2) is closer still, etc. Here i(x) = x - f(x)/f'(x) is what we called the improvement function a. Let f(x)=x^2-10. Compute i(x) in simplified form (i.e. everything in one big fraction involving x). Let r = sqrt(10) and x_1=3. Show a hand computation of x_2 and then x_3, expressing both your...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT