Question

3.) Find the linear transformation T : R2 to R2 described geometrically by "first rotate counter-clockwise...

3.) Find the linear transformation T : R2 to R2 described geometrically by "first rotate counter-clockwise by 60 degrees, then reflect across the line y = x, then scale vectors by a factor of 5". Is this linear transformation invertible? If so, find the matrix of the inverse transformation.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Find the linear transformation T : R2 → R2 described geometrically by “first rotate coun-...
3. Find the linear transformation T : R2 → R2 described geometrically by “first rotate coun- terclockwise by 60◦, then reflect across the line y = x, then scale vectors by a factor of 5”. Is this linear transformation invertible? If so, find the matrix of the inverse transformation.
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a vector (x1, x2) about the x2-axis. (b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a vector (x1, x2) counterclockwise by 135 degrees. (c) Find a linear transformation (with domain and codomain) that has the effect of first reflecting as in (a) and then rotating as in (b). Give the...
Complete translations: start at (1,3). reflect across y-axis, rotate counter clockwise 90 degrees, translate (x+2),(y-1), rotate...
Complete translations: start at (1,3). reflect across y-axis, rotate counter clockwise 90 degrees, translate (x+2),(y-1), rotate 180 degrees, reflect across x-axis, reflect across y-axis, translate (x-1) (y+2), rotate 270 degrees clockwise, translate (x+3)(y+1), reflect across the origin. connect all of your points
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T:...
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T: R2 -> R3 first rotate point through (pie)/2 radian (counterclock-wise) and then reflects points through the horizontal x-axis b) Use part a to find the image of point (1,1) under the transformation T Please explain as much as possible. This was a past test question that I got no points on. I'm study for the final and am trying to understand past test questions.
b) More generally, find the matrix of the linear transformation T : R3 → R3 which...
b) More generally, find the matrix of the linear transformation T : R3 → R3 which is u1  orthogonal projection onto the line spanu2. Find the matrix of T. Prove that u3 T ◦ T = T and prove that T is not invertible.
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T...
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T is projected on the x2 axis.That is,a point x = [x1,x2]^T is projected on to [0,x2]^T . Is A an orthogonal matrix ?I any case,find the eigen values and eigen vectors of A .
Find the matrix of the reflection of R2 across the line y =x/3 followed by the...
Find the matrix of the reflection of R2 across the line y =x/3 followed by the reflection of R2 across the line y = x/2 What type of transformation of the plane is this composition? thank you.
1.1. Let R be the counterclockwise rotation by 90 degrees. Vectors r1=[3,3] and r2=[−2,3] are not...
1.1. Let R be the counterclockwise rotation by 90 degrees. Vectors r1=[3,3] and r2=[−2,3] are not perpendicular. The inverse U of the matrix M=[r1,r2] has columns perpendicular to r2 and r1, so it must be of the form U=[x⋅R(r2),y⋅R(r1)]^T for some scalars x and y. Find y^−1. 1.2. Vectors r1=[1,1] and r2=[−5,5] are perpendicular. The inverse U of the matrix M=[r1,r2] has columns perpendicular to r2 and r1, so it must be of the form U=[x⋅r1,y⋅r2]^T for some scalars x...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT