Question

Combinatorics Math: Let d(n,k) be the number of derangements of length n that consist of k...

Combinatorics Math: Let d(n,k) be the number of derangements of length n that consist of k cycles. Find a formula for d(n,k) in terms of signless Stirling numbers of the first kind.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Combinatorics Let n be a positive counting number, and consider words of length n using letters...
Combinatorics Let n be a positive counting number, and consider words of length n using letters { 0 , 1 } . For example, 1011101 is such a word of length 7 , and 1001 is such a word of length 4 . Let w(n) equal the number of words of length n with no adjacent zeros. For example, w(1) = 2 since there are two words of length 1 with no adjacent zeros: 0 and 1 . And, w(2)...
Let a be an element of order n in a group and d = gcd(n,k) where...
Let a be an element of order n in a group and d = gcd(n,k) where k is a positive integer. a) Prove that <a^k> = <a^d> b) Prove that |a^k| = n/d c) Use the parts you proved above to find all the cyclic subgroups and their orders when |a| = 100.
Let an, for n≥1, be the number of strings of length n over {0,1,2,3}, allowing repetitions,...
Let an, for n≥1, be the number of strings of length n over {0,1,2,3}, allowing repetitions, suchthat no string contains a 3 to the right of a 0. Find a recurrence relation and initial condition(s) for an.
For integer n ≥ 1, let h(n) be the number of length n words consisting of...
For integer n ≥ 1, let h(n) be the number of length n words consisting of A’s and B’s, that contain either at least an “AA”, or at least an “ABB”. Find a recurrence relation satisfied by h(n) (with necessary initial conditions) and solve it. (Previous answers to this question have been incorrect)
Let a, b, and n be integers with n > 1 and (a, n) = d....
Let a, b, and n be integers with n > 1 and (a, n) = d. Then (i)First prove that the equation a·x=b has solutions in n if and only if d|b. (ii) Next, prove that each of u, u+n′, u+ 2n′, . . . , u+ (d−1)n′ is a solution. Here,u is any particular solution guaranteed by (i), and n′=n/d. (iii) Show that the solutions listed above are distinct. (iv) Let v be any solution. Prove that v=u+kn′ for...
let's fix a positive integer n. for a nonnegative integer k, let ak be the number...
let's fix a positive integer n. for a nonnegative integer k, let ak be the number of ways to distribute k indistinguishable balls into n distinguishable bins so that an even number of balls are placed in each bin (allowing empty bins). The generating function for sequence ak is given as 1/F(x). Find F(x).
Let n=60, not a product of distinct prime numbers. Let B_n= the set of all positive...
Let n=60, not a product of distinct prime numbers. Let B_n= the set of all positive divisors of n. Define addition and multiplication to be lcm and gcd as well. Now show that B_n cannot consist of a Boolean algebra under those two operators. Hint: Find the 0 and 1 elements first. Now find an element of B_n whose complement cannot be found to satisfy both equalities, no matter how we define the complement operator.
A license plate is to consist of 3 letters followed by 33 digits. Determine the number...
A license plate is to consist of 3 letters followed by 33 digits. Determine the number of different license plates possible if the first letter must be an​ K, L, or M and repetition of letters and numbers is not permitted. A. 1 comma 296 comma 0001,296,000 B. 1 comma 386 comma 0001,386,000 C. 9 comma 072 comma 0009,072,000 D. 162 comma 000
Find a recurrence relation for the number of bit sequences of length n with an even...
Find a recurrence relation for the number of bit sequences of length n with an even number of 0s. please give me an initial case. + (my question) Let An is denote the number of bit sequences of length n with an even number of 0s. A(1) = 1 because of "0" not "1"? A(2) = 2 but why? why only "11" and "00" are acceptable for this problem? "11,01,10,00" doesn't make sense?
Let N be a positive integer random variable with PMF of the form pN(n)=1/2⋅n⋅2^(−n),n=1,2,…. Once we...
Let N be a positive integer random variable with PMF of the form pN(n)=1/2⋅n⋅2^(−n),n=1,2,…. Once we see the numerical value of N, we then draw a random variable K whose (conditional) PMF is uniform on the set {1,2,…,2n}. Find the marginal PMF pK(k) as a function of k. For simplicity, provide the answer only for the case when k is an even number. (The formula for when k is odd would be slightly different, and you do not need to...