Question

1 point) If the series y(x)=∑n=0∞cnxny(x)=∑n=0∞cnxn is a solution of the differential equation 1y″−6x2y′+2y=01y″−6x2y′+2y=0, then cn+2=cn+2=  cn−1+cn−1+  cn,n=1,2,…cn,n=1,2,…...

1 point)

If the series y(x)=∑n=0∞cnxny(x)=∑n=0∞cnxn is a solution of the differential equation 1y″−6x2y′+2y=01y″−6x2y′+2y=0, then cn+2=cn+2=  cn−1+cn−1+  cn,n=1,2,…cn,n=1,2,…

A general solution of the same equation can be written as y(x)=c0y1(x)+c1y2(x)y(x)=c0y1(x)+c1y2(x), where

y1(x)=1+∑n=2∞anxn,y1(x)=1+∑n=2∞anxn,

y2(x)=x+∑n=2∞bnxn,y2(x)=x+∑n=2∞bnxn,

Calculate

a2=a2=  ,

a3=a3=  ,

a4=a4=  ,

b2=b2=  ,

b3=b3=  ,

b4=b4=  .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If y=∑n=0∞cnx^n is a solution of the differential equation y′′+(x+1)y′−1y=0, then its coefficients cn are related...
If y=∑n=0∞cnx^n is a solution of the differential equation y′′+(x+1)y′−1y=0, then its coefficients cn are related by the equation cn+2= _______cn+1 +______ cn .
If y= ∞∑n=0 cnx^n is a solution of the differential equation y″+(3x−1)y′+2y=0 then its coefficients cn...
If y= ∞∑n=0 cnx^n is a solution of the differential equation y″+(3x−1)y′+2y=0 then its coefficients cn are related by the equation cn+2= _____ cn+1 +_______cn
Let y=2−3x+∑n=2∞an x power n be the power series solution of the differential equation: y″+6xy′+6y=0 about...
Let y=2−3x+∑n=2∞an x power n be the power series solution of the differential equation: y″+6xy′+6y=0 about x=0. Find a4.
Differential Equations problem If y1= e^-x is a solution of the differential equation y'''-y''+2y=0 . What...
Differential Equations problem If y1= e^-x is a solution of the differential equation y'''-y''+2y=0 . What is the general solution of the differential equation?
find the general solution of the given differential equation 1. y''−2y'+2y=0 2. y''+6y'+13y=0 find the solution...
find the general solution of the given differential equation 1. y''−2y'+2y=0 2. y''+6y'+13y=0 find the solution of the given initial value problem 1. y''+4y=0, y(0) =0, y'(0) =1 2. y''−2y'+5y=0, y(π/2) =0, y'(π/2) =2 use the method of reduction of order to find a second solution of the given differential equation. 1. t^2 y''+3ty'+y=0, t > 0; y1(t) =t^−1
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0....
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0. (a) Check that y1(t) = t −1 is a solution to this equation. (b) Find another solution y2(t) such that y1(t) and y2(t) are linearly independent (that is, y1(t) and y2(t) form a fundamental set of solutions for the differential equation)
it can be shown that y1=x^(−2), y2=x^(−5) and  y3=2 are solutions to the differential equation x^2D^3y+10xD^2y+18Dy=0 on...
it can be shown that y1=x^(−2), y2=x^(−5) and  y3=2 are solutions to the differential equation x^2D^3y+10xD^2y+18Dy=0 on (0,∞) What does the Wronskian of y1,y2,y3 equal? W(y1,y2,y3) = Is {y1,y2,y3} a fundamental set for x^2D^3y+10xD^2y+18Dy=0 on (0,∞) ?
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...
1) find a solution for a given differential equation y1'=3y1-4y2+20cost ->y1 is not y*1 & y2...
1) find a solution for a given differential equation y1'=3y1-4y2+20cost ->y1 is not y*1 & y2 is not y*2 y2'=y1-2y2 y1(0)=0,y2(0)=8 2)by setting y1=(theta) and y2=y1', convert the following 2nd order differential equation into a first order system of differential equations(y'=Ay+g) (theta)''+4(theta)'+10(theta)=0
Consider the differential equation x2y''+xy'-y=0, x>0. a. Verify that y(x)=x is a solution. b. Find a...
Consider the differential equation x2y''+xy'-y=0, x>0. a. Verify that y(x)=x is a solution. b. Find a second linearly independent solution using the method of reduction of order. [Please use y2(x) = v(x)y1(x)]