1 point)
If the series y(x)=∑n=0∞cnxny(x)=∑n=0∞cnxn is a solution of the differential equation 1y″−6x2y′+2y=01y″−6x2y′+2y=0, then cn+2=cn+2= cn−1+cn−1+ cn,n=1,2,…cn,n=1,2,…
A general solution of the same equation can be written as y(x)=c0y1(x)+c1y2(x)y(x)=c0y1(x)+c1y2(x), where
y1(x)=1+∑n=2∞anxn,y1(x)=1+∑n=2∞anxn,
y2(x)=x+∑n=2∞bnxn,y2(x)=x+∑n=2∞bnxn,
Calculate
a2=a2= ,
a3=a3= ,
a4=a4= ,
b2=b2= ,
b3=b3= ,
b4=b4= .
Get Answers For Free
Most questions answered within 1 hours.