Question

1 point) If the series y(x)=∑n=0∞cnxny(x)=∑n=0∞cnxn is a solution of the differential equation 1y″−6x2y′+2y=01y″−6x2y′+2y=0, then cn+2=cn+2=  cn−1+cn−1+  cn,n=1,2,…cn,n=1,2,…...

1 point)

If the series y(x)=∑n=0∞cnxny(x)=∑n=0∞cnxn is a solution of the differential equation 1y″−6x2y′+2y=01y″−6x2y′+2y=0, then cn+2=cn+2=  cn−1+cn−1+  cn,n=1,2,…cn,n=1,2,…

A general solution of the same equation can be written as y(x)=c0y1(x)+c1y2(x)y(x)=c0y1(x)+c1y2(x), where

y1(x)=1+∑n=2∞anxn,y1(x)=1+∑n=2∞anxn,

y2(x)=x+∑n=2∞bnxn,y2(x)=x+∑n=2∞bnxn,

Calculate

a2=a2=  ,

a3=a3=  ,

a4=a4=  ,

b2=b2=  ,

b3=b3=  ,

b4=b4=  .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If y=∑n=0∞cnx^n is a solution of the differential equation y′′+(x+1)y′−1y=0, then its coefficients cn are related...
If y=∑n=0∞cnx^n is a solution of the differential equation y′′+(x+1)y′−1y=0, then its coefficients cn are related by the equation cn+2= _______cn+1 +______ cn .
If y= ∞∑n=0 cnx^n is a solution of the differential equation y″+(3x−1)y′+2y=0 then its coefficients cn...
If y= ∞∑n=0 cnx^n is a solution of the differential equation y″+(3x−1)y′+2y=0 then its coefficients cn are related by the equation cn+2= _____ cn+1 +_______cn
Differential Equations problem If y1= e^-x is a solution of the differential equation y'''-y''+2y=0 . What...
Differential Equations problem If y1= e^-x is a solution of the differential equation y'''-y''+2y=0 . What is the general solution of the differential equation?
Let y=2−3x+∑n=2∞an x power n be the power series solution of the differential equation: y″+6xy′+6y=0 about...
Let y=2−3x+∑n=2∞an x power n be the power series solution of the differential equation: y″+6xy′+6y=0 about x=0. Find a4.
find the general solution of the given differential equation 1. y''−2y'+2y=0 2. y''+6y'+13y=0 find the solution...
find the general solution of the given differential equation 1. y''−2y'+2y=0 2. y''+6y'+13y=0 find the solution of the given initial value problem 1. y''+4y=0, y(0) =0, y'(0) =1 2. y''−2y'+5y=0, y(π/2) =0, y'(π/2) =2 use the method of reduction of order to find a second solution of the given differential equation. 1. t^2 y''+3ty'+y=0, t > 0; y1(t) =t^−1
1. Find the general solution to the differential equation y''+ xy' + x^2 y = 0...
1. Find the general solution to the differential equation y''+ xy' + x^2 y = 0 using power series techniques
Given y1(t)=t^2 and y2(t)=t^-1 satisfy the corresponding homogeneous equation of t^2y''−2y=2−t3,  t>0 Then the general solution to...
Given y1(t)=t^2 and y2(t)=t^-1 satisfy the corresponding homogeneous equation of t^2y''−2y=2−t3,  t>0 Then the general solution to the non-homogeneous equation can be written as y(t)=c1y1(t)+c2y2(t)+yp(t) yp(t) =
it can be shown that y1=x^(−2), y2=x^(−5) and  y3=2 are solutions to the differential equation x^2D^3y+10xD^2y+18Dy=0 on...
it can be shown that y1=x^(−2), y2=x^(−5) and  y3=2 are solutions to the differential equation x^2D^3y+10xD^2y+18Dy=0 on (0,∞) What does the Wronskian of y1,y2,y3 equal? W(y1,y2,y3) = Is {y1,y2,y3} a fundamental set for x^2D^3y+10xD^2y+18Dy=0 on (0,∞) ?
a) Find the general solution of the differential equation y''-2y'+y=0 b) Use the method of variation...
a) Find the general solution of the differential equation y''-2y'+y=0 b) Use the method of variation of parameters to find the general solution of the differential equation y''-2y'+y=2e^t/t^3
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...