Question

so we have a matrix: assume [[row]. [row]], dx/dt = [[6, -2], [20, -6]]x. which is...

so we have a matrix: assume [[row]. [row]], dx/dt = [[6, -2], [20, -6]]x. which is with x(0) = [[2], [3]] what is the solution in real form x1= ? and x2 = ? Also what is the trajectory look like?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the system dx/dt = [ row 1: -5 -1 row 2: 1 -5] x with...
Solve the system dx/dt = [ row 1: -5 -1 row 2: 1 -5] x with x(0) = [ row 1: 3 row 2: 1] give your solution in real form: x1 = and x2 =
Solve the Initial value porblem dx/dt=[-4 -4, 4 -4]x x(0)=[9 6] give your solution in real...
Solve the Initial value porblem dx/dt=[-4 -4, 4 -4]x x(0)=[9 6] give your solution in real form x1= x2=
Find the (real-valued) general solution to the system of ODEs given by: X’=[{-1,-1},{2,-3}]X (X is a...
Find the (real-valued) general solution to the system of ODEs given by: X’=[{-1,-1},{2,-3}]X (X is a vector) -1,-1, is the 1st row of the matrix 2,-3, is the  2nd row of the matrix. Then, determine whether the equilibrium solution x1(t) = 0, x2(t) = 0 is stable, a saddle, or unstable.
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify...
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify the harmonic oscillator (undamped, underdamped, critically damped, over damped). Justify your answer.
Use Implicit Differentiation to find first dy/dx , then the equation of the tangent line to...
Use Implicit Differentiation to find first dy/dx , then the equation of the tangent line to the curve x2+xy+y2= 2-y at the point (0,-2) b. Determine a function of the form f(x)= ax2+ bx + c (that is, find the real numbers a,b,c ) if the graph of the function has slope 2 at the point (3,4) , and has a horizontal tangent where x=1 c. Assume that x,y are functions of variable t satisfying the equation x2+xy=10. Find dy/dt...
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1=...
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1= ⎡⎣⎢⎢ ⎤⎦⎥⎥ and v⃗ 2= ⎡⎣⎢⎢ ⎤⎦⎥⎥ Find the solution to the linear system of differential equations [x′1 x′2]=[−13 20−6 9][x1 x2] satisfying the initial conditions [x1(0)x2(0)]=[6−9]. x1(t)= ______ x2(t)= _____
Apply the row operation R1 + 2R3 → R1 on the following matrix:   2...
Apply the row operation R1 + 2R3 → R1 on the following matrix:   2 −3 1 4 2 0 6 −5 1 −1 1 0   −→ (h) True or False: The point (2, 1) is in the following feasible region: x + 2y ≤ 5, 5x − 6y < 7, and x ≥ 0, y ≥ 0. (i) True or False: (x = −1, y = 2, z = 3) is a solution to the following...
Consider the forced spring-mass system: d^2x/dt^2 + ω^2 x = A sin (ωt) (3) where in...
Consider the forced spring-mass system: d^2x/dt^2 + ω^2 x = A sin (ωt) (3) where in general ω ̸= ω0. (a) Find the general solution to equation (3). (b) Find the solution appropriate for the initial conditions x(0) = 0 and dx dt (0) = 0. (c) Let’s explore what happens as resonance is approached: Let ω = ω0 (1 + ϵ), where ϵ ≪ 1. Expand your solution in (b) using the idea of a Taylor series about ω0...
We have noted that u(x) is invariant to positive monotonic transforms. One common transformation is the...
We have noted that u(x) is invariant to positive monotonic transforms. One common transformation is the logarithmic transform, ln(u(x)). Take the logarithmic transform of the utility function; p1 x1 + p2 x2 = y and assume an interior solution, so assume x1 > 0 and x2 > 0, then, using that as the utility function, derive the Marshallian demand functions, and verify that they are identical to those derived.
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT