Question

Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V....

Prove that

Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V. Then so are {v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V , and if ⃗v4 ∈ V , then {⃗v1, ⃗v2, ⃗v3, ⃗v4} is also a linear dependent set of vectors in V . 2. Prove that if {⃗v1,⃗v2,...,⃗vr} is a linear dependent set of vectors in V, and if⃗ vr + 1 ,⃗vr+2,...,⃗vn ∈V, then {⃗v1,⃗v2,...,⃗vn} is also a linear dependent set of vectors in V.
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set,...
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set, and suppose {w⃗1,w⃗2,w⃗3} ⊂ X is a linearly dependent set. Define V = span{⃗v1,⃗v2,⃗v3} and W = span{w⃗1,w⃗2,w⃗3}. (a) Is there a linear transformation P : V → W such that P(⃗vi) = w⃗i for i = 1, 2, 3? (b) Is there a linear transformation Q : W → V such that Q(w⃗i) = ⃗vi for i = 1, 2, 3? Hint: the...
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4...
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4 B) The matrix ( v1 v2 v3 v4) has a unique pivot column. C) S is a basis for Span(v1,v2,v3,v4)
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix...
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix whose columns are ⃗v1,⃗v2,⃗v3,⃗v4. Suppose further that every subset Y ⊂ V of size two is linearly independent. Explain what form(s) rref(X), the reduced row echelon form of X, must take in this case. Hint: you won’t be able to pin down exact numbers for every entry of rref(X), but you might know things like whether the entry can be zero or not, etc.
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for...
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for any vector z in V whatsoever, the vectors u, v, w and z are linearly dependent.
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3, v3+v4, v4 is a...
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3, v3+v4, v4 is a basis of V
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that...
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that every vector w∈V can expressed in multiple ways as a linear combination of these generators.  
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set...
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set S′={3u−w,v+w,−2w}S′={3u−w,v+w,−2w} is also a linearly independent set in V.