Question

Lemma 1.4.5 If x is an accumulation point of S and ε > 0, then there...

Lemma 1.4.5 If x is an accumulation point of S and ε > 0, then there are an infinite number of points of S within ε of x.

Prove lemma 1.4.5 (Hint: Sippose that for some ε > 0, there were only a finite number of points s1,s2,..,s within ε of x. Let ε' = min{|s1-x|, |s2-x|,... |sn-x|}. Now show that no s exists in S satisfies 0 < |s-x| < ε'.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be a set and x a number. Show that x is a limit-point of...
Let A be a set and x a number. Show that x is a limit-point of A if and only if there exists a sequence x1 , x2 , . . . of distinct points in A that converges to x.
Let S denote the set of all possible finite binary strings, i.e. strings of finite length...
Let S denote the set of all possible finite binary strings, i.e. strings of finite length made up of only 0s and 1s, and no other characters. E.g., 010100100001 is a finite binary string but 100ff101 is not because it contains characters other than 0, 1. a. Give an informal proof arguing why this set should be countable. Even though the language of your proof can be informal, it must clearly explain the reasons why you think the set should...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0 for every x ∈ [a,b]. 1) Show that either f(x) > 0 for every x ∈ [a,b] or f(x) < 0 for every x ∈ [a,b]. 2) Assume that f(x) > 0 for every x ∈ [a,b] and prove that there exists ε > 0 such that f(x) ≥ ε for all x ∈ [a,b].
Let X be a topological space with topology T = P(X). Prove that X is finite...
Let X be a topological space with topology T = P(X). Prove that X is finite if and only if X is compact. (Note: You may assume you proved that if ∣X∣ = n, then ∣P(X)∣ = 2 n in homework 2, problem 2 and simply reference this. Hint: Ô⇒ follows from the fact that if X is finite, T is also finite (why?). Therefore every open cover is already finite. For the reverse direction, consider the contrapositive. Suppose X...
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and...
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and f'(x)<= 1 for all x2 ㅌ (-a, a). If f(a) = a and f(-a) =-a. Show that f(0) = 0. Hint: Consider the two cases f(0) < 0 and f(0) > 0. Use mean value theorem to prove that these are impossible cases.
Exercise1.2.1: Prove that if t > 0 (t∈R), then there exists an n∈N such that 1/n^2...
Exercise1.2.1: Prove that if t > 0 (t∈R), then there exists an n∈N such that 1/n^2 < t. Exercise1.2.2: Prove that if t ≥ 0(t∈R), then there exists an n∈N such that n−1≤ t < n. Exercise1.2.8: Show that for any two real numbers x and y such that x < y, there exists an irrational number s such that x < s < y. Hint: Apply the density of Q to x/(√2) and y/(√2).
Let f(x) = x^3 - x a) Find the equation of the secant line through (0,f(0))...
Let f(x) = x^3 - x a) Find the equation of the secant line through (0,f(0)) and (2,f(2)) b) State the Mean-Value Theorem and show that there is only one number c in the interval that satisfies the conclusion of the Mean-Value Theorem for the secant line in part a c) Find the equation of the tangent line to the graph of f at point (c,f(c)). d) Graph the secant line in part (a) and the tangent line in part...
Let⇀H=〈−y(2 +x), x, yz〉 (a) Show that ⇀∇·⇀H= 0. (b) Since⇀H is defined and its component...
Let⇀H=〈−y(2 +x), x, yz〉 (a) Show that ⇀∇·⇀H= 0. (b) Since⇀H is defined and its component functions have continuous partials on R3, one can prove that there exists a vector field ⇀F such that ⇀∇×⇀F=⇀H. Show that F = (1/3xz−1/4y^2z)ˆı+(1/2xyz+2/3yz)ˆ−(1/3x^2+2/3y^2+1/4xy^2)ˆk satisfies this property. (c) Let⇀G=〈xz, xyz,−y^2〉. Show that⇀∇×⇀G is also equal to⇀H. (d) Find a function f such that⇀G=⇀F+⇀∇f.
Please answer Problems 1 and 2 thoroughly. Problem 1: Let X be a set. Define a...
Please answer Problems 1 and 2 thoroughly. Problem 1: Let X be a set. Define a partial ordering ≤ on P(X) by A ≤ B if and only if A ⊆ B. We stated the following two facts in class. In this exercise you are asked to give a formal proof of each: (a) (1 point) If A, B ∈ P(X), then sup{A, B} exists, and sup{A, B} = A ∪ B. (b) (1 point) If A, B ∈ P(X),...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0 for all x. Assume that g(x) f'(x) = f(x) g'(x) for all x. Show that there is a real number c such that f(x) = cg(x) for all x. (Hint: Look at f/g.) Let g: [0, ∞) -> R, with g(x) = x2 for all x ≥ 0. Let L be the line tangent to the graph of g that passes through the point...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT