Let f be monotone increasing and absolutely continuous on [0, 1]. Let E be a subset of [0, 1] with m∗(E) = 0. Show that m∗(f(E)) = 0. Hint: cover E with countably many intervals of small total length and consider what f does to those intervals. Use Vitali Covering Argument
Get Answers For Free
Most questions answered within 1 hours.