Question

Prove that every bounded sequence has a convergent subsequence.

Prove that every bounded sequence has a convergent subsequence.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that X is totally bounded if every sequence of X has a convergent subsequence. Please...
Prove that X is totally bounded if every sequence of X has a convergent subsequence. Please directly prove it without using any theorem on totally boundedness.
Suppose that every Cauchy sequence of X has a convergent subsequence in X. Show that X...
Suppose that every Cauchy sequence of X has a convergent subsequence in X. Show that X is complete.
Show that sequence {sn} converges if it is monotone and has a convergent subsequence.
Show that sequence {sn} converges if it is monotone and has a convergent subsequence.
Find an example of a sequence, {xn}, that does not converge, but has a convergent subsequence....
Find an example of a sequence, {xn}, that does not converge, but has a convergent subsequence. Explain why {xn} (the divergent sequence) must have an infinite number of convergent subsequences.
If (x_n) is a convergent sequence prove that (x_n) is bounded. That is, show that there...
If (x_n) is a convergent sequence prove that (x_n) is bounded. That is, show that there exists C>0 such that abs(x_n) is less than or equal to C for all n in naturals
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence,...
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence, then (an) converges; and (an) diverges to infinity if and only if (an) has an unbounded subsequence.
(a) Prove that the sum of uniformly convergent sequences is also a uniformly convergent sequence. (b)...
(a) Prove that the sum of uniformly convergent sequences is also a uniformly convergent sequence. (b) Prove that if, in addition to part (a), the sequences are bounded, then the product is also uniformly convergent.
Let (x_n) be a sequence in R. Are these true or false. If every subsequence of...
Let (x_n) be a sequence in R. Are these true or false. If every subsequence of (x_n) is Cauchy then (x_n) is Cauchy. If (x_n) is Cauchy and (y_n) is a bounded sequence, then (x_n y_n) is Cauchy. If ( |x_n| ) is Cauchy, then (x_n) is Cauchy.
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only...
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only if every infinite subset of E has a point of accumulation that belongs to E. Use Theorem 4.21: [Bolzano-Weierstrass Property] A set of real numbers is closed and bounded if and only if every sequence of points chosen from the set has a subsequence that converges to a point that belongs to E. Must use Theorem 4.21 to prove Corollary 4.22 and there should...