Question

1. The following theorem can be proved by induction. State the proposition form you’d use to...

1. The following theorem can be proved by induction. State the proposition form you’d use to prove the statement and complete the base case.

Theorem: Suppose s : N → N be a function such that s(0) = 0 and s(n + 1) = s(n) + 1/[(n+1)(n+2)]. Then, s(n) =n/n+1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
This is more of a theoritical question: So, sometimes with induction instead of proving the induction...
This is more of a theoritical question: So, sometimes with induction instead of proving the induction step (so n -> n+1) its handier to prove the contrapositive of it. However, in cases where this happens not only (not (n+1) -> not n) is being proved, but also (not n -> not (n-1) ) etc until you prove the contrapositive of the base case (it's called infinite descent). My question is, why do you have to use infinite descent when proving...
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive...
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive integers n with n ≥ 2, n has a prime factor.
Use mathematical induction to prove that 3n ≥ n2n for n ≥ 0. (Note: dealing with...
Use mathematical induction to prove that 3n ≥ n2n for n ≥ 0. (Note: dealing with the base case may require some thought. Please explain the inductive step in detail.
Theorem: there exists a bijection between the Cantor set C and the unit interval [0,1]. Base...
Theorem: there exists a bijection between the Cantor set C and the unit interval [0,1]. Base Case: prove that for , ·         x1 = 0 implies x in [1, 1/3], ·         x1 = 1 implies x in (1/3, 2/3), and ·         x1 = 2 implies x in [2/3 , 1] . (must deal with endpoint confusion). Induction step: At step n, suppose that the ternary expansion                 x = x1x2 x3 … xn … comprised ONLY of 0’s and 2’s describes a pathway...
Assume S is a recursivey defined set, defined by the following properties: 1 ∈ S n...
Assume S is a recursivey defined set, defined by the following properties: 1 ∈ S n ∈ S ---> 2n ∈ S n ∈ S ---> 7n ∈ S Use structural induction to prove that all members of S are numbers of the form 2^a7^b, with a and b being non-negative integers. Your proof must be concise. Remember to avoid the following common mistakes on structural induction proofs: -trying to force structural Induction into linear Induction. the inductive step is...
Use strong induction to prove that every natural number n ≥ 2 can be written as...
Use strong induction to prove that every natural number n ≥ 2 can be written as n = 2x + 3y, where x and y are integers greater than or equal to 0. Show the induction step and hypothesis along with any cases
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n +...
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n + 2)! Proof (by mathematical induction): Let P(n) be the inequality 2n < (n + 2)!. We will show that P(n) is true for every integer n ≥ 0. Show that P(0) is true: Before simplifying, the left-hand side of P(0) is _______ and the right-hand side is ______ . The fact that the statement is true can be deduced from that fact that 20...
Prove the following claim by using induction on n: Let 0 < α be a constant....
Prove the following claim by using induction on n: Let 0 < α be a constant. Then α^0 + α^1 + α^2 ... α^n = (1-α^(n+1)) / (1 - α) You can assume α DNE 1. Next, assume in addition that α < 1, and that n = ∞. Could you simplify the equation in this case?
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of...
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of induction: WOP, Ordinary or Strong, you plan to use.) proof: Answer goes here.
Proof by Strong Induction Every amount of postage that is at least 12 cents can be...
Proof by Strong Induction Every amount of postage that is at least 12 cents can be made from 4-cent and 5-cent stamps. 1) Base case: 2) Inductive hypothesis: 3) Inductive proof: Given the definition of function f: f(0) = 5 f(n) = f(n-1) + 3n What is f(3) ? What is closed-form solution for f(n) (no need to proof)? Hint: try to write a couple of first values without any calculations – f(1)=f(0)+3n=5+3*1, f(2) = f(1)+3*2=5+3*1+3*2, f(3)=… to see the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT