Question

1. Let a and b be elements of a group, G, whose identity element is denoted...

1. Let a and b be elements of a group, G, whose identity element is denoted by e. Assume that a has order 7 and that a^(3)*b = b*a^(3). Prove that a*b = b*a. Show all steps of proof.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. Let a and b be elements of a group, G, whose identity element is denoted...
2. Let a and b be elements of a group, G, whose identity element is denoted by e. Prove that ab and ba have the same order. Show all steps of proof.
13. Let a, b be elements of some group G with |a|=m and |b|=n.Show that if...
13. Let a, b be elements of some group G with |a|=m and |b|=n.Show that if gcd(m,n)=1 then <a> union <b>={e}. 18. Let G be a group that has at least two elements and has no non-trivial subgroups. Show that G is cyclic of prime order. 20. Let A be some permutation in Sn. Show that A^2 is in An. Please give me steps in details, thanks a lot!
1(a) Suppose G is a group with p + 1 elements of order p , where...
1(a) Suppose G is a group with p + 1 elements of order p , where p is prime. Prove that G is not cyclic. (b) Suppose G is a group with order p, where p is prime. Prove that the order of every non-identity element in G is p.
Let G be a group with subgroups H and K. (a) Prove that H ∩ K...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K must be a subgroup of G. (b) Give an example to show that H ∪ K is not necessarily a subgroup of G. Note: Your answer to part (a) should be a general proof that the set H ∩ K is closed under the operation of G, includes the identity element of G, and contains the inverse in G of each of its elements,...
the question says: prove that if a is an element of a group G, then the...
the question says: prove that if a is an element of a group G, then the order of a = order of its inverse. my attempt: Let order of a=n , so aⁿ=e , and so (a)ⁿ(a^-1)ⁿ=e=(a^-1)ⁿ , so order of a divides order of a^-1 let order of a^-1 =m. so (a^-1)^m=e if and only if a^m =e , so order of a^-1 divides order of a so they are equal. Q.E.D is the proof correct?
(A) Show that if a2=e for all elements a in a group G, then G must...
(A) Show that if a2=e for all elements a in a group G, then G must be abelian. (B) Show that if G is a finite group of even order, then there is an a∈G such that a is not the identity and a2=e. (C) Find all the subgroups of Z3×Z3. Use this information to show that Z3×Z3 is not the same group as Z9. (Abstract Algebra)
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite...
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite order n. (a) Prove that f(a) has finite order k, where k is a divisor of n. (b) If f is an isomorphism, prove that k=n.
Let G be a group and a be an element of G. Let φ:Z→G be a...
Let G be a group and a be an element of G. Let φ:Z→G be a map defined by φ(n) =a^{n} for all n∈Z. Find the image φ(Z) and prove that φ(Z) a subgroup of G
Give the definition of group. Show that the identity (or neutral) element of G is unique....
Give the definition of group. Show that the identity (or neutral) element of G is unique. Moreover, show that the inverse of an element g 2 G is unique as well.
Is it possible for a group G to contain a non-identity element of finite order and...
Is it possible for a group G to contain a non-identity element of finite order and also an element of infinite order? If yes, illustrate with an example. If no, give a convincing explanation for why it is not possible.