Question

Assume f : A → B. (i) Show that if A1 and A2 are subsets of...

Assume f : A → B. (i) Show that if A1 and A2 are subsets of A, such that A2 ⊂ A1, then f(A2) ⊂ f(A1). (ii) Assume f is one-to-one and a ∈ A. Show that if f(a) ∈ f(A1), then a ∈ A1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f : A → B be a function and let A1 and A2 be subsets...
Let f : A → B be a function and let A1 and A2 be subsets of A. Prove that if f is one-to-one, then f(A1 ∩ A2) = f(A1) ∩ f(A2).
Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets...
Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets of X. Show that f[∩i∈IAi ] ⊆ ∩i∈I f[Ai ]. Give an example, using two sets A1 and A2, to show that it’s possible for the LHS to be empty while the RHS is non-empty.
Show work, thank you! Suppose that A1, A2 and B are events where A1 and A2...
Show work, thank you! Suppose that A1, A2 and B are events where A1 and A2 are mutually exclusive events and P(A1) = .5, P(A2) = .5, P(B│A1) = .9, P(B│A2) = .2. Find P(A2│B) A. 0.90 B. 0.20 C. 0.50 D. 0.18
Let X∼Γ(a1,b) be independent of Y, and suppose W=X+Y∼Γ(a2,b), where a2> a1. ShowY∼Γ(a2−a1,b)
Let X∼Γ(a1,b) be independent of Y, and suppose W=X+Y∼Γ(a2,b), where a2> a1. ShowY∼Γ(a2−a1,b)
Show with graphs. In a two country model with two goods and one factor, a1=a2*=1, a2=a1*=2,...
Show with graphs. In a two country model with two goods and one factor, a1=a2*=1, a2=a1*=2, L=L*=300, C2/C1=C2*/C1*=2; where a1 and a2 are quantities of labour input per unit of output for goods 1 and 2, respectively, in home country; L is the endownment of labour at home; C1 and C2 are the consumption levels of the first and second goods, respectively, in the home country; and asterisks indicate the corresponding variables of the foreign country. For each good, what...
The prior probabilities for events A1 and A2 are P(A1) = 0.20 and P(A2) = 0.40....
The prior probabilities for events A1 and A2 are P(A1) = 0.20 and P(A2) = 0.40. It is also known that P(A1 ∩ A2) = 0. Suppose P(B | A1) = 0.20 and P(B | A2) = 0.05. If needed, round your answers to three decimal digits. (a) Are A1 and A2 mutually exclusive? - Select your answer -YesNoItem 1 Explain your answer. The input in the box below will not be graded, but may be reviewed and considered by...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations (a1, a2, a3, · · ·) + (b1, b2, b3, · · ·) = (a1 + b1, a2 + b2, a3 + b3, · · ·), (a1, a2, a3, · · ·) · (b1, b2, b3, · · ·) = (a1 · b1, a2 · b2, a3 ·...