Question

Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.

Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.

Homework Answers

Answer #1

The answer for above problem is explained below.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0
Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0
Given the function f(x, y, z) = (x2 + y2 + z2 )−1/2 a) what is...
Given the function f(x, y, z) = (x2 + y2 + z2 )−1/2 a) what is the gradient at the point (12,0,16)? b) what is the directional derivative of f in the direction of the vector u = (1,1,1) at the point (12,0,16)?
Calculate ∬Se^(−z)dS where S is the surface given by x2+y2=4, 0≤z≤7.
Calculate ∬Se^(−z)dS where S is the surface given by x2+y2=4, 0≤z≤7.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x2 i + y2 j + z2 k S is the boundary of the solid half-cylinder 0 ≤ z ≤ 25 − y2 , 0 ≤ x ≤ 3
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 2zk, S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0, oriented downward
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 4 in the first octant, with orientation toward the origin
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 25 in the first octant, with orientation toward the origin
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i - z j + y k S is the part of the sphere x2 + y2 + z2 = 81 in the first octant, with orientation toward the origin.
Find the linear approximation of the function f(x, y, z) = x2 + y2 + z2...
Find the linear approximation of the function f(x, y, z) = x2 + y2 + z2 at (6, 2, 9) and use it to approximate the number 6.012 + 1.972 + 8.982 . (Round your answer to five decimal places.) f(6.01, 1.97, 8.98) ≈
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xz i + x j + y k S is the hemisphere x2 + y2 + z2 = 4, y ≥ 0, oriented in the direction of the positive y-axis. Incorrect: Your answer is incorrect.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT