Question

Let W be a subspace of R^4 spanned by v1 = [1,1,2,0] and v2 = 2,-1,0,4]....

Let W be a subspace of R^4 spanned by v1 = [1,1,2,0] and v2 = 2,-1,0,4]. Find a basis for W^T = {v is in R^2 : w*v = 0 for w inside of W}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
let v1=[1,0,10], v2=[0,1,0,1] and let W be the subspace of R^4 spanned by v1 and v2....
let v1=[1,0,10], v2=[0,1,0,1] and let W be the subspace of R^4 spanned by v1 and v2. A. convert {v1,v2} into an orhonormal basis of W. Basis = B.find the projection of b=[-1,-2,-2,-1] onto W C.find two linear independent vectors in R^4 perpendicular to W. vectors =
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1,...
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1, v2 and v3. u = (3, 4, 2, 4) ; v1 = (3, 2, 3, 0), v2 = (-8, 3, 6, 3), v3 = (6, 3, -8, 3) Let (x, y, z, w) denote the orthogonal projection of u onto the given subspace. Then, the components of the target orthogonal projection are
Let W be the subspace of R4 spanned by the vectors a = 3e1 − 4e2...
Let W be the subspace of R4 spanned by the vectors a = 3e1 − 4e2 and b = e2 + e3 + e4. Find the orthogonal projection of the vector v = [2, 0, 1, 0] onto W. Then calculate the distance of the point v from the subspace W.
consider the basis S={v1,v2} for R^2,where v1=(-2,1) and v2=(1,3),and let T:R^2-R^3 be linear transformation such that...
consider the basis S={v1,v2} for R^2,where v1=(-2,1) and v2=(1,3),and let T:R^2-R^3 be linear transformation such that T(v1)=(-1,2,0) And T(v2)=(0,-3,5), find T(2,-3)
Do the vectors v1 =   1 2 3   , v2 = ...
Do the vectors v1 =   1 2 3   , v2 =   √ 3 √ 3 √ 3   , v3   √ 3 √ 5 √ 7   , v4 =   1 0 0   form a basis for R 3 ? Why or why not? (b) Let V ⊂ R 4 be the subspace spanned by the vectors a1 and a2, where a1 =   ...
(a) Do the vectors v1 = 1 2 3 , v2 = √ 3 √ 3...
(a) Do the vectors v1 = 1 2 3 , v2 = √ 3 √ 3 √ 3 , v3=√ 3 √ 5 √ 7, v4 = 1 0 0 form a basis for R 3 ? Why or why not? (b) Let V ⊂ R 4 be the subspace spanned by the vectors a1 and a2, where a1 = (1 0 −1 0) , a2 = 0 1 0 −1. Find a basis for the orthogonal complement V ⊥...
Suppose that {v1, v2, u} and {v1, v2, w}, are both bases for some subspace V...
Suppose that {v1, v2, u} and {v1, v2, w}, are both bases for some subspace V ⊆ R n . (a) Demonstrate with an example that it is possible for {u, w} to be linearly independent. (b) Assuming now that {u, w} is linearly independent, decide whether {v1, u, w} is necessarily a basis for V , giving justification for your answer. For both parts it isn’t sufficient just to give answers, you must give convincing arguments, making appropriate use...
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose...
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose that A is a (3 × 4) matrix with the following properties: Av1 = 0, A(v1 + 2v4) = 0, Av2 =[ 1 1 1 ] T , Av3 = [ 0 −1 −4 ]T . Find a basis for N (A), and a basis for R(A). Fully justify your answer.
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4...
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4 (a) Let w  =  (0, 6, 4, 1). Find ||w||. (b) Let W be the subspace spanned by the vectors u1  =  (0, 0, 2, 1), and   u2  =  (3, 0, −2, 1). Use the Gram-Schmidt process to transform the basis {u1, u2} into an orthonormal basis {v1, v2}. Enter the components of the vector v2 into the answer box below, separated with commas.
Let W be the subspace of R4 spanned by the vectors u1  =  (−1, 0, 1,...
Let W be the subspace of R4 spanned by the vectors u1  =  (−1, 0, 1, 0), u2  =  (0, 1, 1, 0), and u3  =  (0, 0, 1, 1). Use the Gram-Schmidt process to transform the basis {u1, u2, u3} into an orthonormal basis.