Question

Find the solution of the following equations using Laplace transform: (a)y'-y=1, y(0)=0 (b) calculate the derivative...

Find the solution of the following equations using Laplace transform:

(a)y'-y=1, y(0)=0

(b) calculate the derivative of L{t^(n-1)f(t)} with respect to s. Is there any relation between the result and L{t^nf(t)}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. y′′+9y={t, 0≤t<1...
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. y′′+9y={t, 0≤t<1 1, 1≤t<∞, y(0)=3, y′(0)=4 Enclose numerators and denominators in parentheses. For example, (a−b)/(1+n). Y(s)=
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform...
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform of y(t), i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation and solve for Y(s)=
Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations uxx...
Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations uxx + uyy = 0, −∞ < x < ∞ 0 < y < a, u(x, 0) = f(x), u(x, a) = 0, −∞ < x < ∞ u(x, y) → 0 uniformlyiny as|x| → ∞.
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. A. y′′+16y...
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. A. y′′+16y = {1, 0 ≤ t < π = {0, π ≤ t < ∞, y(0)=3, y′(0)=5 B. y′′ + 4y = { t, 0 ≤ t < 1 = {1, 1 ≤ t < ∞, y(0)=3, y′(0)=3
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use...
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use Y for the Laplace transform of y(t) find the equation you get by taking the Laplace transform of the differential equation and solving for Y: Y(s)=? Find the partial fraction decomposition of Y(t) and its inverse Laplace transform to find the solution of the IVP: y(t)=?
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now...
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now solve the IVP by using the inverse Laplace Transform y(t)=L^−1{Y(s)} y(t) =
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y...
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y = 0 y(0) = −3 , y′(0) = −3 First, using Y for the Laplace transform of y(t)y, i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation __________________________ = 0 Now solve for Y(s) = ______________________________ and write the above answer in its partial fraction decomposition, Y(s) = A / (s+a) + B / ((s+a)^2) Y(s) =...
Solve the system of differential equations using Laplace transform: y'' + x + y = 0...
Solve the system of differential equations using Laplace transform: y'' + x + y = 0 x' + y' = 0 with initial conditions y'(0) = 0 y(0) = 0 x(0) = 1
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where...
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where S is a periodic function defined by S(t)={1,0≤t<1 0, 1≤t<2, and S(t+2)=S(t) for all t≥0. Hint: : Use the formula for the Laplace transform of a periodic function. Y(s)=
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT