Question

y′′(t) +ty′(t)−2y(t) = 2, y(0) = 0,y′(0) = 0 . This is a non-homogeneous linear second-order...

y′′(t) +ty′(t)−2y(t) = 2, y(0) = 0,y′(0) = 0 . This is a non-homogeneous linear second-order differential equation withnon-constantcoefficients andnotof Euler type.

(a) Write the Laplace transform of the Initial Value Problem above.

(b) Find a closed formula for the Laplace transformL(y(t)).

(c) Find the unique solutiony(t) to the Initial Value Problem

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1 solve...
for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1 solve this initial value problem by using Laplace Transform.
Second-Order Linear Non-homogeneous with Constant Coefficients: Find the general solution to the following differential equation, using...
Second-Order Linear Non-homogeneous with Constant Coefficients: Find the general solution to the following differential equation, using the Method of Undetermined Coefficients. y''− 2y' + y = 4x + xe^x
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform...
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform of y(t), i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation and solve for Y(s)=
Given the second order initial value problem y′′+y′−6y=5δ(t−2),  y(0)=−5,  y′(0)=5 Y(s) denote the Laplace transform of y. Then...
Given the second order initial value problem y′′+y′−6y=5δ(t−2),  y(0)=−5,  y′(0)=5 Y(s) denote the Laplace transform of y. Then Y(s)= Taking the inverse Laplace transform we obtain y(t)= y(t)=
Given the second order initial value problem y′′−3y′=12δ(t−2),  y(0)=0,  y′(0)=3y″−3y′=12δ(t−2),  y(0)=0,  y′(0)=3Let Y(s)Y(s) denote the Laplace transform of yy. Then...
Given the second order initial value problem y′′−3y′=12δ(t−2),  y(0)=0,  y′(0)=3y″−3y′=12δ(t−2),  y(0)=0,  y′(0)=3Let Y(s)Y(s) denote the Laplace transform of yy. Then Y(s)=Y(s)=  . Taking the inverse Laplace transform we obtain y(t)=
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where...
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where S is a periodic function defined by S(t)={1,0≤t<1 0, 1≤t<2, and S(t+2)=S(t) for all t≥0. Hint: : Use the formula for the Laplace transform of a periodic function. Y(s)=
Given the second order initial value problem y′′+25y=5δ(t−1),  y(0)=2,  y′(0)=−10y″+25y=5δ(t−1),  y(0)=2,  y′(0)=−10Let Y(s)Y(s) denote the Laplace transform of yy. Then...
Given the second order initial value problem y′′+25y=5δ(t−1),  y(0)=2,  y′(0)=−10y″+25y=5δ(t−1),  y(0)=2,  y′(0)=−10Let Y(s)Y(s) denote the Laplace transform of yy. Then Y(s)=Y(s)=  . Taking the inverse Laplace transform we obtain y(t)=
solve the differential equations by series of potentials: a)y''(t)=ty(t) b)y(t)''+ty(t)'+2y(t)=0
solve the differential equations by series of potentials: a)y''(t)=ty(t) b)y(t)''+ty(t)'+2y(t)=0
Use Laplace transform to solve the following initial value problem: y '' − 2y '+ 2y...
Use Laplace transform to solve the following initial value problem: y '' − 2y '+ 2y = e −t , y(0) = 0 and y ' (0) = 1 differential eq
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use...
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use Y for the Laplace transform of y(t) find the equation you get by taking the Laplace transform of the differential equation and solving for Y: Y(s)=? Find the partial fraction decomposition of Y(t) and its inverse Laplace transform to find the solution of the IVP: y(t)=?