Question

Proof: Let f and g be functions defined on (possibly different) closed intervals, and assume the...

Proof: Let f and g be functions defined on (possibly different) closed intervals, and assume the range of f is contained in the domain of g so that the composition g ◦ f is properly defined If f is integrable and g is increasing, then g ◦ f is integrable.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f and g be functions between A and B. Prove that f = g iff...
Let f and g be functions between A and B. Prove that f = g iff the domain of f = the domain of g and for every x in the domain of f, f(x) = g(x). Thank you!
Let A, B ⊆R be intervals. Let f: A →R and g: B →R be differentiable...
Let A, B ⊆R be intervals. Let f: A →R and g: B →R be differentiable and such that f(A) ⊆ B. Recall that, by the Chain Rule, the composition g◦f: A →R is differentiable as well, and the formula (g◦f)'(x) = g'(f(x))f'(x) holds for all x ∈ A. Assume now that both f and g are twice differentiable. (a) Prove that the composition g ◦ f is twice differentiable as well, and find a formula for the second derivative...
Let A, B, C be sets and let f : A → B and g :...
Let A, B, C be sets and let f : A → B and g : f (A) → C be one-to-one functions. Prove that their composition g ◦ f , defined by g ◦ f (x) = g(f (x)), is also one-to-one.
Let the function f and g be defined as f(x) = x/ x − 1 and...
Let the function f and g be defined as f(x) = x/ x − 1 and g(x) = 2 /x +1 . Compute the sum (f + g)(x) and the quotient (f/g)(x) in simplest form and describe their domains. (f + g )(x) = Domain of (f+g)(x): (f/g)(x) = Domain of (f/g)(x):
Let f and g be continuous functions on the reals and let S={x in R |...
Let f and g be continuous functions on the reals and let S={x in R | f(x)>=g(x)} . Show that S is a closed set.
The functions f and g are defined as ?f(x)=10x+33 and ?g(x)=11?55x. ?a) Find the domain of?...
The functions f and g are defined as ?f(x)=10x+33 and ?g(x)=11?55x. ?a) Find the domain of? f, g, fplus+?g, f??g, ?fg, ff, f/ g, and g/f. ?b) Find ?(f+?g)(x), (f??g)(x), ?(fg)(x), (ff)(x),(f/g)(x), and (g/f)(x).
Let f and g be measurable unsigned functions on R^d . Assume f(x) ≤ g(x) for...
Let f and g be measurable unsigned functions on R^d . Assume f(x) ≤ g(x) for almost every x. Prove that the integral of f dx ≤ Integral of g dx.
Let f, g : Z → Z be defined as follows: ? f(x) = {x +...
Let f, g : Z → Z be defined as follows: ? f(x) = {x + 1 if x is odd; x - 1 if x is even}, g(x) = {x - 1 if x is odd; x + 1 if x is even}. Describe the functions fg and gf. Then compute the orders of f, g, fg, and gf.
. Let f and g : [0, 1] → R be continuous, and assume f(x) =...
. Let f and g : [0, 1] → R be continuous, and assume f(x) = g(x) for all x < 1. Does this imply that f(1) = g(1)? Provide a proof or a counterexample.
Suppose that f and g are infinitely differentiable functions defined on R. Suppose that Pf is...
Suppose that f and g are infinitely differentiable functions defined on R. Suppose that Pf is the second order Taylor polynomial for f centered at 0 and that Pg is the second order Taylor polynomial for g centered at 0. Let Pfg be the second order Taylor polynomial for fg centered at 0. Is Pfg = PfPg? If not, is there a relationship between Pfg and PfPg ?