Question

Consider the following vectors {1 -x, 1+ x, x-2} A. test or refute if the vector...

Consider the following vectors
{1 -x, 1+ x, x-2}

A. test or refute if the vector set is linearly independent

B. build a linearly independent set of dimension 1, describe the shape of the generated space

C. build a linearly independent set of dimension 2, describe the shape of the generated space

D. for the base you chose in part c, find a linear combination for p(x)=7 - x

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
Write each vector as a linear combination of the vectors in S. (Use s1 and s2,...
Write each vector as a linear combination of the vectors in S. (Use s1 and s2, respectively, for the vectors in the set. If not possible, enter IMPOSSIBLE.) S = {(1, 2, −2), (2, −1, 1)} (a)    z = (−5, −5, 5) z = ? (b)    v = (−2, −6, 6) v = ? (c)    w = (−1, −17, 17) w = ? Show that the set is linearly dependent by finding a nontrivial linear combination of vectors in the set whose sum...
Please anwser in detail Determine if the following sets of vector are linearly independent. If not,...
Please anwser in detail Determine if the following sets of vector are linearly independent. If not, write one vector as a linear combination of other vectors in the set. [1 2 -4] , [3 3 2] , [4 5 -6]
(a) Consider x^2 + 7x + 15 = f(x) and e^x = g(x) which are vectors...
(a) Consider x^2 + 7x + 15 = f(x) and e^x = g(x) which are vectors of F(R, R) with the usual addition and scalar multiplication. Are these functions linearly independent? (b) Let S be a finite set of linearly independent vectors {u1, u2, · · · , un} over the field Z2. How many vectors are in Span(S)? (c) Is it possible to find three linearly dependent vectors in R^3 such that any two of the three are not...
Consider the vector x = (3, 11). a) What is the vector representation of x using...
Consider the vector x = (3, 11). a) What is the vector representation of x using the base B1 = {(1, −1), (1, 1)}. b) What is the vector representation of x using the base B2 = {(1, 1), (0, 2)}. c) Construct a linear mapping from base B1 to base B2 (Find the matrix P^−1 associated with mapping). d) Verify that P^−1 x, where x is the vector representation of part a).
Using a step by step proof format Please prove: Given that x is a vector in...
Using a step by step proof format Please prove: Given that x is a vector in the span of V, where V is a linearly independent set of vectors, show that there is ONLY ONE linear combination of the vectors in V that yields x. (Hint: to show that something is unique, assume that there is more than one such thing and show that this leads to a contradiction)
3. Which of the following sets spans P2(R)? (a) {1 + x, 2 + 2x 2}...
3. Which of the following sets spans P2(R)? (a) {1 + x, 2 + 2x 2} (b) {2, 1 + x + x 2 , 3 + 2x + 2x 2} (c) {1 + x, 1 + x 2 , x + x 2 , 1 + x + x 2} 4. Consider the vector space W = {(a, b) ∈ R 2 | b > 0} with defined by (a, b) ⊕ (c, d) = (ad + bc, bd)...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set,...
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set, and suppose {w⃗1,w⃗2,w⃗3} ⊂ X is a linearly dependent set. Define V = span{⃗v1,⃗v2,⃗v3} and W = span{w⃗1,w⃗2,w⃗3}. (a) Is there a linear transformation P : V → W such that P(⃗vi) = w⃗i for i = 1, 2, 3? (b) Is there a linear transformation Q : W → V such that Q(w⃗i) = ⃗vi for i = 1, 2, 3? Hint: the...
Answer all of the questions true or false: 1. a) If one row in an echelon...
Answer all of the questions true or false: 1. a) If one row in an echelon form for an augmented matrix is [0 0 5 0 0] b) A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax=b has at least one solution. c) The solution set of b is the set of all vectors of the form u = + p + vh where vh is any solution...