Question

Prove If ν(n) > ν(n−1) then n is a power of 10. Where ν(n) is the...

Prove If ν(n) > ν(n−1) then n is a power of 10. Where ν(n) is the smallest element of { t ∈ N : n < 10^t}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Recall that ν(n) is the divisor function: it gives the number of positive divisors of n....
Recall that ν(n) is the divisor function: it gives the number of positive divisors of n. Prove that ν(n) is a prime number if and only if n = pq-1 , where p and q are prime numbers.
Let T  = z/(sqrt(w/v)) has a t-distribution with ν df, when Z ~ N(0, 1) is independent...
Let T  = z/(sqrt(w/v)) has a t-distribution with ν df, when Z ~ N(0, 1) is independent of W ~ χ2(ν);  Prove that V(T) = v/v-2 if ν > 2, Use that V(T) = E(T2) - µ2.
Prove 1/4 is not a limit point of 1/n where n is a positive integer.
Prove 1/4 is not a limit point of 1/n where n is a positive integer.
If kr<=n, where 1<r<=n. Prove that the number of permutations α ϵ Sn, where α is...
If kr<=n, where 1<r<=n. Prove that the number of permutations α ϵ Sn, where α is a product of k disjoint r-cycles is (1/k!)(1/r^k)[n(n-1)(n-2)...(n-kr+1)]
Prove Euler’s theorem: if n and a are positive integers with gcd(a,n)=1, then aφ(n)≡1 modn, where...
Prove Euler’s theorem: if n and a are positive integers with gcd(a,n)=1, then aφ(n)≡1 modn, where φ(n) is the Euler’s function of n.
Prove that lim n^k*x^n=0 as n approaches +infinity. Where -1<x<1 and k is in N.
Prove that lim n^k*x^n=0 as n approaches +infinity. Where -1<x<1 and k is in N.
Use a loop invariant to prove that the following program segment for computing the nth power,...
Use a loop invariant to prove that the following program segment for computing the nth power, where n is a positive integer, of a real number x is correct. power := 1 i := 1 while i <= n power := power*x i := i+1
Exercise1.2.1: Prove that if t > 0 (t∈R), then there exists an n∈N such that 1/n^2...
Exercise1.2.1: Prove that if t > 0 (t∈R), then there exists an n∈N such that 1/n^2 < t. Exercise1.2.2: Prove that if t ≥ 0(t∈R), then there exists an n∈N such that n−1≤ t < n. Exercise1.2.8: Show that for any two real numbers x and y such that x < y, there exists an irrational number s such that x < s < y. Hint: Apply the density of Q to x/(√2) and y/(√2).
Let A ={1-1/n | n is a natural number} Prove that 0 is a lower bound...
Let A ={1-1/n | n is a natural number} Prove that 0 is a lower bound and 1 is an upper bound:  Start by taking x in A.  Then x = 1-1/n for some natural number n.  Starting from the fact that 0 < 1/n < 1 do some algebra and arithmetic to get to 0 < 1-1/n <1. Prove that lub(A) = 1:  Suppose that r is another upper bound.  Then wts that r<= 1.  Suppose not.  Then r<1.  So 1-r>0....
Let a be an element of order n in a group and d = gcd(n,k) where...
Let a be an element of order n in a group and d = gcd(n,k) where k is a positive integer. a) Prove that <a^k> = <a^d> b) Prove that |a^k| = n/d c) Use the parts you proved above to find all the cyclic subgroups and their orders when |a| = 100.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT