Question

In lecture, we proved that any tree with n vertices must have n − 1 edges....

In lecture, we proved that any tree with n vertices must have n − 1 edges. Here, you will prove the converse of this statement.

Prove that if G = (V, E) is a connected graph such that |E| = |V| − 1, then G is a tree.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Graph Theory . While it has been proved that any tree with n vertices must have...
Graph Theory . While it has been proved that any tree with n vertices must have n − 1 edges. Here, you will prove the converse of this statement. Prove that if G = (V, E) is a connected graph such that |E| = |V | − 1, then G is a tree.
Let G = (V,E) be a graph with n vertices and e edges. Show that the...
Let G = (V,E) be a graph with n vertices and e edges. Show that the following statements are equivalent: 1. G is a tree 2. G is connected and n = e + 1 3. G has no cycles and n = e + 1 4. If u and v are vertices in G, then there exists a unique path connecting u and v.
Let G be an undirected graph with n vertices and m edges. Use a contradiction argument...
Let G be an undirected graph with n vertices and m edges. Use a contradiction argument to prove that if m<n−1, then G is not connected
Given a tree with p vertices, how many edges must you add without adding vertices to...
Given a tree with p vertices, how many edges must you add without adding vertices to obtain a maximal planar graph?
Prove that a bipartite simple graph with n vertices must have at most n2/4 edges. (Here’s...
Prove that a bipartite simple graph with n vertices must have at most n2/4 edges. (Here’s a hint. A bipartite graph would have to be contained in Kx,n−x, for some x.)
Let G be a connected simple graph with n vertices and m edges. Prove that G...
Let G be a connected simple graph with n vertices and m edges. Prove that G contains at least m−n+ 1 different subgraphs which are polygons (=circuits). Note: Different polygons can have edges in common. For instance, a square with a diagonal edge has three different polygons (the square and two different triangles) even though every pair of polygons have at least one edge in common.
Prove that if a graph has 1000 vertices and 4000 edges then it must have a...
Prove that if a graph has 1000 vertices and 4000 edges then it must have a cycle of length at most 20.
A spanning tree of connected graph G = (V, E) is an acyclic connected subgraph (V,...
A spanning tree of connected graph G = (V, E) is an acyclic connected subgraph (V, E0 ) with the same vertices as G. Show that every connected graph G = (V, E) contains a spanning tree. (It is the connected subgraph (V, E0 ) with the smallest number of edges.)
Show that if G is connected with n ≥ 2 vertices and n − 1 edges...
Show that if G is connected with n ≥ 2 vertices and n − 1 edges that G contains a vertex of degree 1. Hint: use the fact that deg(v1) + ... + deg(vn) = 2e
A graph is called planar if it can be drawn in the plane without any edges...
A graph is called planar if it can be drawn in the plane without any edges crossing. The Euler’s formula states that v − e + r = 2, where v,e, and r are the numbers of vertices, edges, and regions in a planar graph, respectively. For the following problems, let G be a planar simple graph with 8 vertices. Find the maximum number of edges in G. Find the maximum number of edges in G, if G has no...