Question

Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is...

Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is injective and g is surjective.*You may not use, without proof, the result that if g◦f is surjective then g is surjective, and if g◦f is injective then f is injective. In fact, doing so would result in circular logic.

Homework Answers

Answer #1

Please feel free to ask any query in the comment box and don't forget to rate if you like it.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that...
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is surjective then g is surjective. 8.5: Let f : X → Y and g : Y→ Z be bijections. Prove that if composition g o f is bijective then f is bijective. 8.6: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is bijective then f is...
Prove or disprove: If f:A→B and g:B→A are functions and g◦f is a bijection, then f...
Prove or disprove: If f:A→B and g:B→A are functions and g◦f is a bijection, then f and g are bijections.
Let f : A → B and g : B → C. For each statement below...
Let f : A → B and g : B → C. For each statement below either prove it or construct f, g, A, B, C which show that the statement is false. (a) If g ◦ f is surjective, then g is surjective. (b) If g ◦ f is surjective, then f is surjective. (c) If g ◦ f is injective, then f and g are injective
Let X, Y and Z be sets. Let f : X → Y and g :...
Let X, Y and Z be sets. Let f : X → Y and g : Y → Z functions. (a) (3 Pts.) Show that if g ◦ f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X → Y and g : Y → Z such that g ◦ f is injective but g is not injective. (c) (3 Pts.) Show that...
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective....
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective. (b)Show that f is not surjective.
let f:A->B and let D1, D2, and D be subsets of A. Prove or Disprove F^-1(D1UD2)=F^-1(D1)UF^-1(D2)
let f:A->B and let D1, D2, and D be subsets of A. Prove or Disprove F^-1(D1UD2)=F^-1(D1)UF^-1(D2)
Let f : R → R + be defined by the formula f(x) = 10^2−x ....
Let f : R → R + be defined by the formula f(x) = 10^2−x . Show that f is injective and surjective, and find the formula for f −1 (x). Suppose f : A → B and g : B → A. Prove that if f is injective and f ◦ g = iB, then g = f −1 .
Let A, B, C be sets and let f : A → B and g :...
Let A, B, C be sets and let f : A → B and g : f (A) → C be one-to-one functions. Prove that their composition g ◦ f , defined by g ◦ f (x) = g(f (x)), is also one-to-one.
Let f and g be functions between A and B. Prove that f = g iff...
Let f and g be functions between A and B. Prove that f = g iff the domain of f = the domain of g and for every x in the domain of f, f(x) = g(x). Thank you!
2. Let A = {a,b} and B = {1,2,3}. (a) Write out all functions f :...
2. Let A = {a,b} and B = {1,2,3}. (a) Write out all functions f : A → B using two-line notation. How many different functions are there, and why does this number make sense? (You might want to consider the multiplicative principle here). (b) How many of the functions are injective? How many are surjective? Identify these (circle/square the functions in your list). (c) Based on your work above, and what you know about the multiplicative principle, how many...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT