Question

Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is...

Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is injective and g is surjective.*You may not use, without proof, the result that if g◦f is surjective then g is surjective, and if g◦f is injective then f is injective. In fact, doing so would result in circular logic.

Homework Answers

Answer #1

Please feel free to ask any query in the comment box and don't forget to rate if you like it.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that...
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is surjective then g is surjective. 8.5: Let f : X → Y and g : Y→ Z be bijections. Prove that if composition g o f is bijective then f is bijective. 8.6: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is bijective then f is...
Prove or disprove: If f:A→B and g:B→A are functions and g◦f is a bijection, then f...
Prove or disprove: If f:A→B and g:B→A are functions and g◦f is a bijection, then f and g are bijections.
Let f : A → B and g : B → C. For each statement below...
Let f : A → B and g : B → C. For each statement below either prove it or construct f, g, A, B, C which show that the statement is false. (a) If g ◦ f is surjective, then g is surjective. (b) If g ◦ f is surjective, then f is surjective. (c) If g ◦ f is injective, then f and g are injective
Let X, Y and Z be sets. Let f : X → Y and g :...
Let X, Y and Z be sets. Let f : X → Y and g : Y → Z functions. (a) (3 Pts.) Show that if g ◦ f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X → Y and g : Y → Z such that g ◦ f is injective but g is not injective. (c) (3 Pts.) Show that...
let f:A->B and let D1, D2, and D be subsets of A. Prove or Disprove F^-1(D1UD2)=F^-1(D1)UF^-1(D2)
let f:A->B and let D1, D2, and D be subsets of A. Prove or Disprove F^-1(D1UD2)=F^-1(D1)UF^-1(D2)
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective....
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective. (b)Show that f is not surjective.
Let f : R → R + be defined by the formula f(x) = 10^2−x ....
Let f : R → R + be defined by the formula f(x) = 10^2−x . Show that f is injective and surjective, and find the formula for f −1 (x). Suppose f : A → B and g : B → A. Prove that if f is injective and f ◦ g = iB, then g = f −1 .
Let A, B, C be sets and let f : A → B and g :...
Let A, B, C be sets and let f : A → B and g : f (A) → C be one-to-one functions. Prove that their composition g ◦ f , defined by g ◦ f (x) = g(f (x)), is also one-to-one.
Let f : A → B, g : B → C be such that g ◦...
Let f : A → B, g : B → C be such that g ◦ f is one-to-one (1 : 1). (a) Prove that f must also be one-to-one (1 : 1). (b) Consider the statement ‘g must also be one-to-one’. If it is true, prove it. If it is not, give a counter example.
Let f and g be functions between A and B. Prove that f = g iff...
Let f and g be functions between A and B. Prove that f = g iff the domain of f = the domain of g and for every x in the domain of f, f(x) = g(x). Thank you!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT