Question

prove that f(x) = sin(x^2) is continuous, positive and decreasing

prove that f(x) = sin(x^2) is continuous, positive and decreasing

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If f is continuous on [1,3], then prove that {f(1)+f(2)+f(3)}/3 is in f(x) for x is...
If f is continuous on [1,3], then prove that {f(1)+f(2)+f(3)}/3 is in f(x) for x is in [1,3].
prove that these functions are uniformly continuous on (0,1): 1. f(x)=sinx/x 2. f(x)=x^2logx
prove that these functions are uniformly continuous on (0,1): 1. f(x)=sinx/x 2. f(x)=x^2logx
Prove that if f(x) is a continuous function and f(x) is not zero then g(x) =...
Prove that if f(x) is a continuous function and f(x) is not zero then g(x) = 1/f(x) is a continuous function.   Use the epsilon-delta definition of continuity and please overexplain and check your work before answering.
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs...
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs then there is an r ∈ (a,b) such that f(r) = 0. Using the claims: f is continuous on [a,b] there exists a left sequence (a_n) that is increasing and bounded and converges to r, and left decreasing sequence and bounded (b_n)=r. limf(a_n)= r= limf(b_n), and f(r)=0.
real analysis (a) prove that e^x is continuous at x=0 (b) using (a) prove that it...
real analysis (a) prove that e^x is continuous at x=0 (b) using (a) prove that it is continuous for all x (c) prove that lnx is continuous for positive x
28.8 Let f(x)=x^2 for x rational and f(x) = 0 for x irrational. (a) Prove f...
28.8 Let f(x)=x^2 for x rational and f(x) = 0 for x irrational. (a) Prove f is continuous at x = 0. (b) Prove f is discontinuous at all x not= 0. (c) Prove f is differentiable at x = 0.Warning: You cannot simply claim f '(x)=2x.
Prove that if f: X → Y is a continuous function and C ⊂ Y is...
Prove that if f: X → Y is a continuous function and C ⊂ Y is closed that the preimage of C, f^-1(C), is closed in X.
generate a continuous and differentiable function with the following properties: f(x) is decreasing at x=-5, local...
generate a continuous and differentiable function with the following properties: f(x) is decreasing at x=-5, local minimum is x=-3, local maximum is x=3
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
(b) Define f : R → R by f(x) := x 2 sin 1 x for...
(b) Define f : R → R by f(x) := x 2 sin 1 x for x 6= 0, and f(x) = 0 for x = 0. Does f 0 (0) exist? Prove your claim.