Question

Solve: uxx + uyy = 0 in {(x,y) st x2 + y2 < 1 , x...

Solve:

uxx + uyy = 0 in {(x,y) st x2 + y2 < 1 , x > 0, y > 0}

u = 0 on x=0 and y=0

∂u/∂r = 1 on r=1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
To write Laplace’s equation, Uxx + Uyy = 0, in polar coordinates, we begin with Ux...
To write Laplace’s equation, Uxx + Uyy = 0, in polar coordinates, we begin with Ux = (∂U/∂r)(∂r/∂x) + (∂U/∂θ)(∂θ/∂x) where r = √(x2+y2), θ = arctan (y/x), x = r cos θ, y = r sin θ. We get Ux = (cos θ) Ur – (1/r)(sin θ) Uθ , Uxx = [∂(Ux)/∂r] (∂r/∂x) + [∂(Ux)/∂θ](∂θ/∂x) Carry out this computation, as well as that for Uyy. Since Uxx and Uyy are both expressed in polar coordinates, their sum gives Laplace...
Consider Dirichlet-Neumann problem uxx + uyy = 0,    −∞ < x < ∞, 0 <...
Consider Dirichlet-Neumann problem uxx + uyy = 0,    −∞ < x < ∞, 0 < y < 1 u|y=0 = f(x) uy|y=1 = g(x) Make Fourier transform by x, solve problem for ODE for uˆ(k, y) which you get as a result and write u(x, y) as a Fourier integral.
Solve the differential equation : 4 x y y' = y2 + x2 with initial condition...
Solve the differential equation : 4 x y y' = y2 + x2 with initial condition y(1)=1
Let joint CDF Fx,y (x,y) = сxy(x2 + y2) for 0 ≤ x ≤ 1, 0...
Let joint CDF Fx,y (x,y) = сxy(x2 + y2) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Find а) constant с. b) Fx|y (x|y) for x = 0.5, y = 0.5.  
Consider the second order linear partial differential equation a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy...
Consider the second order linear partial differential equation a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f(x, y)u = 0. (1) a). Show that under a coordinate transformation ξ = ξ(x, y), η = η(x, y) the PDE (1) transforms into the PDE α(ξ, η)uξξ + 2β(ξ, η)uξη + γ(ξ, η)uηη + δ(ξ, η)uξ + (ξ, η)uη + ψ(ξ, η)u = 0, (2) where α(ξ, η) = aξ2 x + 2bξxξy + cξ2...
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2)...
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2) y=0, find a second, linearly independent solution y2. Find the Laplace transform. L{t2 * tet} Thanks for solving!
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x 2) U(x,0) = x^3 , Ut(x,0) =sinx (PDE)
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x...
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x < 1, t > 0, u(0,t) = T1, u(1,t) = T2, where T1 and T2 are distinct constants, and u(x,0) = 0
Solve the heat equation ut = k uxx, 0 < x < L, t > 0...
Solve the heat equation ut = k uxx, 0 < x < L, t > 0 u(0, t) = u(L, t) = 0, t > 0 u(x, 0) = f(x), 0 < x < L a) f(x) = 6 sin 9πx L b) f(x) = 1 if 0 < x ≤ L/2 2 if L/2 < x < L
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t)...
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t) = u(3,t) = 1 - u(x,0) = 0 Please write clearly and explain your reasoning.