· Let A and B be sets. If A and B are countable, then A ∪ B is countable.
· Let A and B be sets. If A and B are infinite, then A ∪ B is infinite.
· Let A and B be sets. If A and B are countably infinite, then A ∪ B is countably infinite.
Find nontrivial sets A and B such that A ∪ B = Z, then use these theorems to show Z is countably infinite.
Get Answers For Free
Most questions answered within 1 hours.