Question

Consider the following initial value problem:

dy/dt = -3 - 2 *
t^{2}, y(0) = 2

With the use of Euler's method, we would like to find an approximate solution with the step size h = 0.05 .

**What is the approximation of y
(0.2)? **

Answer #1

Consider the initial value problem
dy/dx= 6xy2 y(0)=1
a) Solve the initial value problem explicitly
b) Use eulers method with change in x = 0.25 to estimate y(1)
for the initial value problem
c) Use your exact solution in (a) and your approximate answer in
(b) to compute the error in your approximation of y(1)

Use Euler's method to approximate y(0.2), where
y(x) is the solution of the initial-value
problem
y'' − 4y' + 4y = 0, y(0) = −3, y'(0) =
1.
Use
h = 0.1.
Find the analytic solution of the problem, and compare the
actual value of y(0.2) with y2. (Round
your answers to four decimal places.)
y(0.2)
≈
(Euler approximation)
y(0.2)
=
-2.3869
(exact value)
I'm looking for the Euler approximation number, thanks.

1) Consider the following initial-value problem.
(x + y)2 dx + (2xy + x2 − 2) dy =
0, y(1) = 1
Let af/ax = (x + y)2 = x2 + 2xy +
y2.
Integrate each term of this partial derivative with respect to
x, letting h(y)
be an unknown function in y.
f(x, y) = + h(y)
Find the derivative of h(y).
h′(y) =
Solve the given initial-value problem.
2) Solve the given initial-value problem.
(6y + 2t − 3)
dt...

6. Consider the initial value problem
y' = ty^2 + y, y(0) = 0.25,
with (exact) solution y(t).
(a) Verify that the solution of the initial value problem is
y(t) = 1/(3e^(-t) − t + 1)
and evaluate y(1) to at least four decimal places.
(b) Use Euler’s method to approximate y(1), using a step size of
h = 0.5, and evaluate the difference between y(1) and the Euler’s
method approximation.
(c) Use MATLAB to implement Euler’s method with each...

Given the initial value problem:
y'=6√(t+y), y(0)=1
Use Euler's method with step size h = 0.1 to estimate:
y(0.1) =
y(0.2) =

1. Consider the initial value problem dy/dx =3cos(x^2) with
y(0)=2.
(a) Use two steps of Euler’s method with h=0.5 to approximate
the value of y(0.5), y(1) to 4 decimal places.
b) Use four steps of Euler’s method with h=0.25, to
approximate the value of y(0.25),y(0.75),y(1), to 4 decimal places.
(c) What is the difference between the two results of Euler’s
method, to two decimal places?

Use Euler's method with step size h=0.2 to approximate the
solution to the initial value problem at the points x=4.2 4.4 4.6
4.8 round to two decimal
y'=3/x(y^2+y), y(4)=1

Initial value problem : Differential equations:
dx/dt = x + 2y
dy/dt = 2x + y
Initial conditions:
x(0) = 0
y(0) = 2
a) Find the solution to this initial value problem
(yes, I know, the text says that the solutions are
x(t)= e^3t - e^-t and y(x) = e^3t + e^-t
and but I want you to derive these solutions yourself using one
of the methods we studied in chapter 4) Work this part out on paper
to...

1)Consider the following initial-value problem.
(x + y)2 dx + (2xy + x2 − 2) dy =
0, y(1) = 1. Let af/ax = (x + y)2 =
x2 + 2xy + y2. Integrate each term of this
partial derivative with respect to x, letting
h(y) be an unknown function in y.
f(x, y) = + h(y)
Solve the given initial-value problem.
2) Solve the given initial-value problem.
(6y + 2t − 3)
dt + (8y + 6t
− 1) dy...

Consider the initial value problem
dy dx
=
1−2x 2y
, y(0) = − √2
(a) (6 points) Find the explicit solution to the initial value
problem.
(b) (3 points) Determine the interval in which the solution is
deﬁned.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 3 minutes ago

asked 3 minutes ago

asked 7 minutes ago

asked 44 minutes ago

asked 44 minutes ago

asked 56 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago