Question

Give an example of each if possible, if not possible tell why. 1) A set of...

Give an example of each if possible, if not possible tell why.

1) A set of non-zero vectors in R4 that span R4 but are not linearly independent

2) A linear transformation T: R3 -> R3 that is one to one but NOT onto

3) A Linear transformation T: R3 -> R4 that is one to one

4) A Linear transformation T: R4 -> R3 that is onto

5) A Linear transformation T: R3 -> R4 that is onto

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Give an counter example or explain why those are false a) every linearly independent subset of...
Give an counter example or explain why those are false a) every linearly independent subset of a vector space V is a basis for V b) If S is a finite set of vectors of a vector space V and v ⊄span{S}, then S U{v} is linearly independent c) Given two sets of vectors S1 and S2, if span(S1) =Span(S2), then S1=S2 d) Every linearly dependent set contains the zero vector
Give an example of the described object or explain why such an example does not exist....
Give an example of the described object or explain why such an example does not exist. •An orthogonal linear transformation T: R2→R2. •An orthogonal linear transformation T: R3→R3. •A basis B for R2 and an orthogonal linear transformation T: R2→R2 such that [T]B is an orthogonal matrix. •A basis B for R2 and an orthogonal linear transformation T: R2→R2 such that [T]B is NOT an orthogonal matrix. •A non-orthogonal linear transformation that takes an orthogonal basis to an orthogonal basis.
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that...
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R 4 → R) Problem 3. (20 pts.) Which of the following statements are true about the transformation matrix...
7. Answer the following questions true or false and provide an explanation. • If you think...
7. Answer the following questions true or false and provide an explanation. • If you think the statement is true, refer to a definition or theorem. • If false, give a counter-example to show that the statement is not true for all cases. (a) Let A be a 3 × 4 matrix. If A has a pivot on every row then the equation Ax = b has a unique solution for all b in R^3 . (b) If the augmented...
Find an example of a nonzero, non-Invertible 2x2 matrix A and a linearly independent set {V,W}...
Find an example of a nonzero, non-Invertible 2x2 matrix A and a linearly independent set {V,W} of two, distinct non-zero vectors in R2 such that {AV,AW} are distinct, nonzero and linearly dependent. verify the matrix A in non-invertible, verify the set {V,W} is linearly independent and verify the set {AV,AW} is linearly dependent
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set,...
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set, and suppose {w⃗1,w⃗2,w⃗3} ⊂ X is a linearly dependent set. Define V = span{⃗v1,⃗v2,⃗v3} and W = span{w⃗1,w⃗2,w⃗3}. (a) Is there a linear transformation P : V → W such that P(⃗vi) = w⃗i for i = 1, 2, 3? (b) Is there a linear transformation Q : W → V such that Q(w⃗i) = ⃗vi for i = 1, 2, 3? Hint: the...
Write each vector as a linear combination of the vectors in S. (Use s1 and s2,...
Write each vector as a linear combination of the vectors in S. (Use s1 and s2, respectively, for the vectors in the set. If not possible, enter IMPOSSIBLE.) S = {(1, 2, −2), (2, −1, 1)} (a)    z = (−5, −5, 5) z = ? (b)    v = (−2, −6, 6) v = ? (c)    w = (−1, −17, 17) w = ? Show that the set is linearly dependent by finding a nontrivial linear combination of vectors in the set whose sum...
9. Either give an example of each of the following or explain why it would be...
9. Either give an example of each of the following or explain why it would be impossible. (a) [2 points] Two orthogonal vectors in R 3 that are linearly dependent. (b) [2 points] Three orthonormal vectors in R 3 that are linearly dependent. (c) [2 points] A 3 × 2 matrix Q whose column vectors are orthonormal and QQT 6= I. (d) [2 points] A 3 × 3 matrix Q whose column vectors are orthonormal and QQT 6= I. (e)...
k- If a and b are linearly independent, and if {a , b , c} is...
k- If a and b are linearly independent, and if {a , b , c} is linearly dependent, then c is in Span{a , b}. Group of answer choices j- If A is a 4 × 3 matrix, then the transformation described by A cannot be one-to-one. true/ false L- If A is a 5 × 4 matrix, then the transformation x ↦ A x cannot map R 4 onto R 5. True / false
1) Let S={v_1, ..., v_p} be a linearly dependent set of vectors in R^n. Explain why...
1) Let S={v_1, ..., v_p} be a linearly dependent set of vectors in R^n. Explain why it is the case that if v_1=0, then v_1 is a trivial combination of the other vectors in S. 2) Let S={(0,1,2),(8,8,16),(1,1,2)} be a set of column vectors in R^3. This set is linearly dependent. Label each vector in S with one of v_1, v_2, v_3 and find constants, c_1, c_2, c_3 such that c_1v_1+ c_2v_2+ c_3v_3=0. Further, identify the value j and v_j...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT