Question

a) Prove that the union between two countably infinite sets is a countably infinite set. b)...

a) Prove that the union between two countably infinite sets is a countably infinite set.

b) Would the statement above hold if we instead started with an infinite amount of countably infinite sets?

_________________________________________________

Thank you in advance!

Homework Answers

Answer #1

a) Let A and B be two countably infinite sets. This implies that there exists bijections . Then, let us look at the function , where

Note that if x is in A, then all of the even numbers are covered and if x is in B\A, then all the odd numebrs will be covered. Hence, . Now, as f and g are bijective, hence h is injective. Thus h is a bijection therefore is a countably infinite set.

b) The result would still hold if we take countable number of countably infinte sets, i.e. the cardinality would be the same as as if you keep doing unions of the sets, the cardinality remains the same due to the two set case in part a).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that a disjoint union of any finite set and any countably infinite set is countably...
Prove that a disjoint union of any finite set and any countably infinite set is countably infinite. Proof: Suppose A is any finite set, B is any countably infinite set, and A and B are disjoint. By definition of disjoint, A ∩ B = ∅ Then h is one-to-one because f and g are one-to one and A ∩ B = 0. Further, h is onto because f and g are onto and given any element x in A ∪...
Prove that a subset of a countably infinite set is finite or countably infinite.
Prove that a subset of a countably infinite set is finite or countably infinite.
Prove directly (using only the definition of the countably infinite set, without the use of any...
Prove directly (using only the definition of the countably infinite set, without the use of any theo-rems) that the union of a finite set and a countably infinite set is countably infinite.   
(a) Let A and B be countably infinite sets. Decide whether the following are true for...
(a) Let A and B be countably infinite sets. Decide whether the following are true for all, some (but not all), or no such sets, and give reasons for your answers.  A ∪B is countably infinite  A ∩B is countably infinite  A\B is countably infinite, where A ∖ B = { x | x ∈ A ∧ X ∉ B }. (b) Let F be the set of all total unary functions f : N → N...
Prove that if X and Y are disjoint countably infinite sets then X ∪ Y is...
Prove that if X and Y are disjoint countably infinite sets then X ∪ Y is countably infinity (can you please show the bijection from N->XUY clearly)
Prove the union of two infinite countable sets is countable.
Prove the union of two infinite countable sets is countable.
Suppose A is an infinite set and B is countable and disjoint from A. Prove that...
Suppose A is an infinite set and B is countable and disjoint from A. Prove that the union A U B is equivalent to A by defining a bijection f: A ----> A U B. Thus, adding a countably infinite set to an infinite set does not increase its size.
Determine whether each of these sets is finite, countably infinite, or uncountable. For those that are...
Determine whether each of these sets is finite, countably infinite, or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set. For those that are finite or uncountable, explain your reasoning. a. integers that are divisible by 7 or divisible by 10
Prove for each of the following: a. Exercise A union of finitely many or countably many...
Prove for each of the following: a. Exercise A union of finitely many or countably many countable sets is countable. (Hint: Similar) b. Theorem: (Cantor 1874, 1891) R is uncountable. c. Theorem: We write |R| = c the “continuum”. Then c = |P(N)| = 2א0 d. Prove the set I of irrational number is uncountable. (Hint: Contradiction.)
Which of the following sets are finite? countably infinite? uncountable? Give reasons for your answers for...
Which of the following sets are finite? countably infinite? uncountable? Give reasons for your answers for each of the following: (a) {1\n :n ∈ Z\{0}}; (b)R\N; (c){x ∈ N:|x−7|>|x|}; (d)2Z×3Z Please answer questions in clear hand-writing and show me the full process, thank you (Sometimes I get the answer which was difficult to read).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT