Question

Create truth tables to prove whether each of the following is valid or invalid. You can...

Create truth tables to prove whether each of the following is valid or invalid.

You can use Excel

1. (3 points)

P v R

~R

.: ~P

2. (4 points)

(P & Q) => ~R

R

.: ~(P & Q)

3. (8 points)

(P v Q) <=> (R & S)

R

S

.: P v Q

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the FULL truth-table method to determine whether the following argument form is valid or invalid....
Use the FULL truth-table method to determine whether the following argument form is valid or invalid. Show the complete table (with a column of ‘T’s and ‘F’s under every operator); state explicitly whether the argument form is valid or invalid; and clearly identify counterexample rows, if there are any. (p ⋅ q) ⊃ ~(q ∨ p), p ⊃ (p ⊃ q) /∴ q ≡ p Use the FULL truth-table method to determine whether the following argument form is valid or...
Indicate whether the argument form is valid (V), or invalid (I). Show your work. ~p ∨...
Indicate whether the argument form is valid (V), or invalid (I). Show your work. ~p ∨ (~q ∨ r) ~p ⊃ r ∴ q ∨ r Indicate whether the argument form is valid (V) or invalid (I). Show your work. ~p ≡ q p ⊃ q ∴ ~p ● q
Use a truth table to determine whether the following argument is valid. p →q ∨ ∼r...
Use a truth table to determine whether the following argument is valid. p →q ∨ ∼r q → p ∧ r ∴ p →r
For each of the following propositions construct a truth table and indicate whether it is a...
For each of the following propositions construct a truth table and indicate whether it is a tautology (i.e., it’s always true), a contradiction (it’s never true), or a contingency (its truth depends on the truth of the variables). Also specify whether it is a logical equivalence or not. Note: There should be a column for every operator. There should be three columns to show work for a biconditional. c) (P V Q) Λ ( ¬(? Λ Q) Λ (¬?)) d)...
Hello! I hope you are healthy and well! I am hoping that this message finds you...
Hello! I hope you are healthy and well! I am hoping that this message finds you happy and content! I am having trouble solving this 5-part practice problem. I would greatly appreciate any and all help that you could lend! Thanks in advance! Given that A and B are true and X and Y are false, determine the truth values of the propositions in the following problem: ∼[(B • ∼X) ⊃ ∼(Y • ∼B)] ⊃ [∼(X ⊃ A) ∨ (B...
1) Determine whether the following conclusions are valid or invalid. Use a diagram or one of...
1) Determine whether the following conclusions are valid or invalid. Use a diagram or one of the laws to prove your point. a. Premises: If you are a beauty, then you are not a beast. Julia is not a beast. Conclusion: Julia is a beauty. b. Premises: You have used a VCR, if you are a millennial. George is a millennial. Conclusion: George has used a VCR.
use truth tables to determine whether or not the following arguments are valid: a) if jones...
use truth tables to determine whether or not the following arguments are valid: a) if jones is convicted then he will go to prison. Jones will be convicted only if Smith testifies against him. Therefore , Jones won't go to prison unless smith testifies against him. b) either the Democrats or the Republicans will have a majority in the Senate. but not both. Having a Democratic majority is a necessary condition for the bill to pass. Therefore, if the republicans...
Construct a truth table to determine whether the following expression is a tautology, contradiction, or a...
Construct a truth table to determine whether the following expression is a tautology, contradiction, or a contingency. (r ʌ (p ® q)) ↔ (r ʌ ((r ® p) ® q)) Use the Laws of Logic to prove the following statement: r ʌ (p ® q) Û r ʌ ((r ® p) ® q) [Hint: Start from the RHS, and use substitution, De Morgan, distributive & idempotent] Based on (a) and/or (b), can the following statement be true? (p ® q)...
For three statements P, Q and R, use truth tables to verify the following. (a) (P...
For three statements P, Q and R, use truth tables to verify the following. (a) (P ⇒ Q) ∧ (P ⇒ R) ≡ P ⇒ (Q ∧ R). (c) (P ⇒ Q) ∨ (P ⇒ R) ≡ P ⇒ (Q ∨ R). (e) (P ⇒ Q) ∧ (Q ⇒ R) ≡ P ⇒ R.
Part IV: All of the following arguments are VALID. Prove the validity of each using NATURAL...
Part IV: All of the following arguments are VALID. Prove the validity of each using NATURAL DEDUCTION. 1) 1. H É I 2. U v ~I 3. ~U 4. H v S                                               / S 2) 1. (I × E) É (F É Y) 2. Y É ~C 3. I × E                                                 / F É ~C 3) 1. L v O 2. (F v C) É B 3. L É F 4. O É C                                              / B 4) 1. K ×...