Question

By using delta- epsilon show that the two definitions of the limit are equivalent Def1: lim┬(x→x_0...

By using delta- epsilon show that the two definitions of the limit are equivalent

Def1: lim┬(x→x_0 )⁡〖f(x)=f(x_0)〗. If for any ϵ>0,there exist a δ>0 such that 0<|x-x_0 |<δ implies |f(x)-L|<ϵ

Def2: If for any sequence {x_n }→x_0 we have f(x_n)→L

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
prove the statement using the epsilon delta definition of a limit lim x-->2 (x^2-2x+7)=1
prove the statement using the epsilon delta definition of a limit lim x-->2 (x^2-2x+7)=1
Use Definition 4.2.1 to supply a proper proof for the following limit statements. (a) lim as...
Use Definition 4.2.1 to supply a proper proof for the following limit statements. (a) lim as x→2 of (3x + 4) = 10. (d) lim as x→3 of 1/x =1 /3. Definition 4.2.1 (Functional Limit). Let f : A → R, and let c be a limit point of the domain A. We say that limx→c f(x)=L provided that, for all ϵ>0, there exists a δ>0 such that whenever 0 < |x−c| <δ(and x ∈ A) it follows that |f(x)−L|...
Use the formal definition of limit (epsilon-delta definition) to prove that lim x--> 3 (x^2 +...
Use the formal definition of limit (epsilon-delta definition) to prove that lim x--> 3 (x^2 + 5x) = 24.
Consider the following limit. lim x→4 (x2 + 8) Find the limit L. L = 24...
Consider the following limit. lim x→4 (x2 + 8) Find the limit L. L = 24 (a) Find δ > 0 such that |f(x) − L| < 0.01 whenever 0 < |x − c| < δ. (Round your answer to five decimal places.) δ =   (b) Find δ > 0 such that |f(x) − L| < 0.005 whenever 0 < |x − c| < δ. (Round your answer to five decimal places.) δ =
Consider the following limit. lim (x^2 + 4) (x--> 5) 1. Find the limit L. 2....
Consider the following limit. lim (x^2 + 4) (x--> 5) 1. Find the limit L. 2. Find the largest δ such that |f(x) − L| < 0.01 whenever 0 < |x − 5| < δ. (Assume 4 < x < 6 and δ > 0. Round your answer to four decimal places.) I am honestly so lost... if you could please show work I would greatly appreciate it!!
let f(x) = 3x3 - 2 and let epsilon>0 be given Find a delta so that...
let f(x) = 3x3 - 2 and let epsilon>0 be given Find a delta so that |x -1 |<=delta implies |f(x) -1|<=epsilon
show that any polynomial is continuous on R using the epsilon-delta definition of continuity (not the...
show that any polynomial is continuous on R using the epsilon-delta definition of continuity (not the limit definition)
hi guys , using this definition for limits in higher dimensions : lim (x,y)→(a,b) f(x, y)...
hi guys , using this definition for limits in higher dimensions : lim (x,y)→(a,b) f(x, y) = L if 1. ∃r > 0 s.th. f(x, y) is defined when 0 < || (x, y) − (a, b) || < r and 2. given ε > 0 we can find δ > 0 s.th. 0 < || (x, y) − (a, b) || < δ =⇒ | f(x, y) − L | < ε how do i show that this is...
Find the limit if it exists or show that the limit does not exist. lim (x,y)...
Find the limit if it exists or show that the limit does not exist. lim (x,y) to (0,0). y^2 sin^2x/ x^4+y^4
using theorem "the sequential characterization of limit" show lim(c/x^2) =0 as x goes to infinity for...
using theorem "the sequential characterization of limit" show lim(c/x^2) =0 as x goes to infinity for all c in R.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT