Question

Let N denote the set of positive integers, and let x be a number which does...

Let N denote the set of positive integers, and let x be a number which does not belong to N. Give an explicit bijection f : N ∪ x → N.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Let N denote the nonnegative integers, and Z denote the integers. Define the function g...
3. Let N denote the nonnegative integers, and Z denote the integers. Define the function g : N→Z defined by g(k) = k/2 for even k and g(k) = −(k + 1)/2 for odd k. Prove that g is a bijection. (a) Prove that g is a function. (b) Prove that g is an injection . (c) Prove that g is a surjection.
Prove that for fixed positive integers k and n, the number of partitions of n is...
Prove that for fixed positive integers k and n, the number of partitions of n is equal to the number of partitions of 2n + k into n + k parts. show by using bijection
Let E = {0, 2, 4, . . .} be the set of non-negative even integers...
Let E = {0, 2, 4, . . .} be the set of non-negative even integers Prove that |Z| = |E| by defining an explicit bijection
Let n be a positive integer, and let Hn denote the graph whose vertex set is...
Let n be a positive integer, and let Hn denote the graph whose vertex set is the set of all n-tuples with coordinates in {0, 1}, such that vertices u and v are adjacent if and only if they differ in one position. For example, if n = 3, then (0, 0, 1) and (0, 1, 1) are adjacent, but (0, 0, 0) and (0, 1, 1) are not. Answer the following with brief justification (formal proofs not necessary): a....
3. (8 marks) Let T be the set of integers that are not divisible by 3....
3. Let T be the set of integers that are not divisible by 3. Prove that T is a countable set by finding a bijection between the set T and the set of integers Z, which we know is countable from class. (You need to prove that your function is a bijection.)
Characterize the set of all positive integers n for which φ(n) is divisible by 2 but...
Characterize the set of all positive integers n for which φ(n) is divisible by 2 but not by 4
Let X Geom(p). For positive integers n, k define P(X = n + k | X...
Let X Geom(p). For positive integers n, k define P(X = n + k | X > n) = P(X = n + k) / P(X > n) : Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.
Euler's Totient Function Let f(n) denote Euler's totient function; thus, for a positive integer n, f(n)...
Euler's Totient Function Let f(n) denote Euler's totient function; thus, for a positive integer n, f(n) is the number of integers less than n which are coprime to n. For a prime p its is known that f(p^k) = p^k-p^{k-1}. For example f(27) = f(3^3) = 3^3 - 3^2 = (3^2) 2=18. In addition, it is known that f(n) is multiplicative in the sense that f(ab) = f(a)f(b) whenever a and b are coprime. Lastly, one has the celebrated generalization...
Let m and n be positive integers. Exhibit an arrangement of the integers between 1 and...
Let m and n be positive integers. Exhibit an arrangement of the integers between 1 and mn which has no increasing subsequence of length m + 1, and no decreasing subsequence of length n + 1.
Let (X, d) be a metric space, and let U denote the set of all uniformly...
Let (X, d) be a metric space, and let U denote the set of all uniformly continuous functions from X into R. (a) If f,g ∈ U and we define (f + g) : X → R by (f + g)(x) = f(x) + g(x) for all x in X, show that f+g∈U. In words,U is a vector space over R. (b)If f,g∈U and we define (fg) : X → R by (fg)(x) = f(x)g(x) for all x in X,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT