Question

Consider the vector u1=(2,0,2), u2=(4,1,-1), u3=( 0,1,-5), u4=(3,0,2) a) Find the dimension and a basis for...

Consider the vector u1=(2,0,2), u2=(4,1,-1), u3=( 0,1,-5), u4=(3,0,2)

a) Find the dimension and a basis for U= span{ u1,u2,u3,u4}

b) Does the vector u=(2,-1,4) belong to U. Justify!

c) Is it true that U = span{ u1,u2,u3} justify the answer!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the vector: u1=(1,1,1), u2= (2,-1,1), u3=(3,0,2), u4=(6,0,4) a)Plot the dimension and a basis for W=...
Consider the vector: u1=(1,1,1), u2= (2,-1,1), u3=(3,0,2), u4=(6,0,4) a)Plot the dimension and a basis for W= span {u1,u2,u3,u4} b)Does the vector v= (3,3,1) belong to W? justify the answer. c) Is it true that W= span{ u3,u4} Justify answer.
Linear Algebra Write x as the sum of two vectors, one is Span {u1, u2, u3}...
Linear Algebra Write x as the sum of two vectors, one is Span {u1, u2, u3} and one in Span {u4}. Assume that {u1,...,u4} is an orthogonal basis for R4 u1 = [0, 1, -6, -1] , u2 = [5, 7, 1, 1], u3 = [1, 0, 1, -6], u4 = [7, -5, -1, 1], x = [14, -9, 4, 0] x = (Type an integer or simplified fraction for each matrix element.)      
Let B1 = { u1, u2, u3 }, where u1 = (2,?1, 1), u2 = (1,?2,...
Let B1 = { u1, u2, u3 }, where u1 = (2,?1, 1), u2 = (1,?2, 1), and u3 = (1,?1, 0). B1 is a basis for R^3 . A. Find the transition matrix Q ^?1 from the standard basis of R ^3 to B1 . B. Write U as a linear combination of the basis B1 .
Here are some vectors in R 4 : u1 = [1 3 −1 1] u2 =...
Here are some vectors in R 4 : u1 = [1 3 −1 1] u2 = [1 4 −1 1] u3 = [1 0 −1 1] u4 = [2 −1 −2 2] u5 = [1 4 0 1] (a) Explain why these vectors cannot possibly be independent. (b) Form a matrix A whose columns are the ui’s and compute the rref(A). (c) Solve the homogeneous system Ax = 0 in parametric form and then in vector form. (Be sure the...
Find a basis for each of the following vector spaces and find its dimension (justify): (a)...
Find a basis for each of the following vector spaces and find its dimension (justify): (a) Q[ √3 2] over Q (b) Q[i, √ 5] (that is, Q[i][√ 5]) over Q;
Decide whether the following set of vectors are linearly independent or dependent. Justify the answer! a)...
Decide whether the following set of vectors are linearly independent or dependent. Justify the answer! a) In R^3: v1=(0,2,3), v2=(3,-1,4), v3=(3,2,2) b) In R^3: u1=(1,2,0), u2=(2,1,3), u3=(4,2,-1), u4=( 2,1,4) c) In Matriz 2x2: A= | 1 6 | B= | 1 4 |    C= | 1 4 | |-1 4 |,    | 3 2 |,    | 2 -4 |   
Consider the ordered bases B={[8,9]} and C={[-2,0],[-3,3]} for the vector space R^2. A. find the matrix...
Consider the ordered bases B={[8,9]} and C={[-2,0],[-3,3]} for the vector space R^2. A. find the matrix from C to B. B.Find the coordinates of u=[2,1] in the ordered basis B. C.Find the coordinates of v in the ordered basis B if the coordinate vector of v in C =[-1,2].
1) Your colleague on the skyscraper design team brings in a quiver (a set) full of...
1) Your colleague on the skyscraper design team brings in a quiver (a set) full of vectors. She would like to know which ones could be used as a basis. Select vectors from the quiver that will span the subspace represented by all vectors in the quiver. Quiver Set: v1 = (1,−1,5,2), v2 = (−2,3,1,0), v3 = (4,−5,9,4), v4 = (0,4,2,−3), v5 =(−7,18,2,−8) Part 2: She wants to know if they span R6. What is the problem with her question?...
Consider the vector space M2x2 with the usual addition and scalar multiplication. Let it be the...
Consider the vector space M2x2 with the usual addition and scalar multiplication. Let it be the subspace of M2x2 defined as follows: H= { | a b | | c d |    with b= c} consider matrices A= | 1 2 |    B= |-2 2 |    C= | 1 8 |    | 1 3 | , | 1 -3 | ,    | 4 6 | Do they form a basis for H? justify the answer
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that...
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that p(-1)=0. (a) Prove that S is a subspace of the vector space of all polynomials. (b) Find a basis for S. (c) What is the dimension of S? 6. Let ? ⊆ R! be the span of ?1 = (2,1,0,-1), ?2 =(1,2,-6,1), ?3 = (1,0,2,-1) and ? ⊆ R! be the span of ?1 =(1,1,-2,0), ?2 =(3,1,2,-2). Prove that V=W.