Question

Decide whether the following set of vectors are linearly independent or dependent. Justify the answer! a)...

Decide whether the following set of vectors are linearly independent or dependent. Justify the answer!
a) In R^3: v1=(0,2,3), v2=(3,-1,4), v3=(3,2,2)

b) In R^3: u1=(1,2,0), u2=(2,1,3), u3=(4,2,-1), u4=( 2,1,4)

c) In Matriz 2x2: A= | 1 6 | B= | 1 4 |    C= | 1 4 |

|-1 4 |,    | 3 2 |,    | 2 -4 |   

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4...
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4 B) The matrix ( v1 v2 v3 v4) has a unique pivot column. C) S is a basis for Span(v1,v2,v3,v4)
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
Are vectors [1,0,0,2,1], [0,1,0,1,−4], and [0,0,1,−1,−1], and [3,1,5,2,−6] linearly independent? Are vectors v1=[−16,1,−39], v2=[2,6,3] and v3=[3,1,7]...
Are vectors [1,0,0,2,1], [0,1,0,1,−4], and [0,0,1,−1,−1], and [3,1,5,2,−6] linearly independent? Are vectors v1=[−16,1,−39], v2=[2,6,3] and v3=[3,1,7] linearly independent?
Determine whether the given set of vectors is linearly dependent or independent. ?? = [5 1...
Determine whether the given set of vectors is linearly dependent or independent. ?? = [5 1 2 1], ?? = [−1 1 2 − 1], ?? = [7 2 4 1]
Determine if the vectors v1= (3, 0, -3, 6), v2 = ( 0, 2, 3, 1),...
Determine if the vectors v1= (3, 0, -3, 6), v2 = ( 0, 2, 3, 1), and v3 = (0, -2, 2, 0 ) form a linearly dependent set in R 4. Is it a basis of R4 ?
Determine if vectors are linearly dependent or independent: 1. (1,2), (-1,-3) 2. (2,-1,4),(4,-2,7),(1,5,8) 3. (-3,4,2),(7,-1,3),(1.1.8)
Determine if vectors are linearly dependent or independent: 1. (1,2), (-1,-3) 2. (2,-1,4),(4,-2,7),(1,5,8) 3. (-3,4,2),(7,-1,3),(1.1.8)
Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0],...
Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0], where a and b are parameters. Find all conditions on the values of a and b (if any) for which: 1. The number of linearly independent vectors in this collection is 1. 2. The number of linearly independent vectors in this collection is 2. 3. The number of linearly independent vectors in this collection is 3. 4. The number of linearly independent vectors in...
(a) Consider x^2 + 7x + 15 = f(x) and e^x = g(x) which are vectors...
(a) Consider x^2 + 7x + 15 = f(x) and e^x = g(x) which are vectors of F(R, R) with the usual addition and scalar multiplication. Are these functions linearly independent? (b) Let S be a finite set of linearly independent vectors {u1, u2, · · · , un} over the field Z2. How many vectors are in Span(S)? (c) Is it possible to find three linearly dependent vectors in R^3 such that any two of the three are not...
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set,...
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set, and suppose {w⃗1,w⃗2,w⃗3} ⊂ X is a linearly dependent set. Define V = span{⃗v1,⃗v2,⃗v3} and W = span{w⃗1,w⃗2,w⃗3}. (a) Is there a linear transformation P : V → W such that P(⃗vi) = w⃗i for i = 1, 2, 3? (b) Is there a linear transformation Q : W → V such that Q(w⃗i) = ⃗vi for i = 1, 2, 3? Hint: the...