Question

Using Discrete Math Let ρ be the relation on the set of natural numbers N given...

Using Discrete Math

Let ρ be the relation on the set of natural numbers N given by: for all x, y ∈ N, xρy if and only if x + y is even. Show that ρ is an equivalence relation and determine the equivalence classes.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
I have a discrete math question. let R be a relation on the set of all...
I have a discrete math question. let R be a relation on the set of all real numbers given by cry if and only if x-y = 2piK for some integer K. prove that R is an equivalence relation.
Let A = {1,2,3,4,5,6,7,8,9,10} define the equivalence relation R on A as follows : For all...
Let A = {1,2,3,4,5,6,7,8,9,10} define the equivalence relation R on A as follows : For all x,y A, xRy <=> 3|(x-y) . Find the distinct equivalence classes of R(discrete math)
Let R be the relation on the set of real numbers such that xRy if and...
Let R be the relation on the set of real numbers such that xRy if and only if x and y are real numbers that differ by less than 1, that is, |x − y| < 1. Which of the following pair or pairs can be used as a counterexample to show this relation is not an equivalence relation? A) (1, 1) B) (1, 1.8), (1.8, 3) C) (1, 1), (3, 3) D) (1, 1), (1, 1.5)
Let ~ be an equivalence relation on a given set A. Show [a] = [b] if...
Let ~ be an equivalence relation on a given set A. Show [a] = [b] if and only if a ~ b, for all a,b exists in A.
Let N* be the set of positive integers. The relation ∼ on N* is defined as...
Let N* be the set of positive integers. The relation ∼ on N* is defined as follows: m ∼ n ⇐⇒ ∃k ∈ N* mn = k2 (a) Prove that ∼ is an equivalence relation. (b) Find the equivalence classes of 2, 4, and 6.
For natural numbers x and y, define xRy if and only if x^2 + y is...
For natural numbers x and y, define xRy if and only if x^2 + y is even. Prove that R is an equivalence relation on the set of natural numbers and find the quotient set determined by R. What would the quotient set be? can this proof be explained in detail?
1. a. Consider the definition of relation. If A is the set of even numbers and...
1. a. Consider the definition of relation. If A is the set of even numbers and ≡ is the subset of ordered pairs (a,b) where a<b in the usual sense, is ≡ a relation? Explain. b. Consider the definition of partition on the bottom of page 18. Theorem 2 says that the equivalence classes of an equivalence relation form a partition of the set. Consider the set ℕ with the equivalence relation ≡ defined by the rule: a≡b in ℕ...
Let R be the relation on the integers given by (a, b) ∈ R ⇐⇒ a...
Let R be the relation on the integers given by (a, b) ∈ R ⇐⇒ a − b is even. 1. Show that R is an equivalence relation 2. List teh equivalence classes for the relation Can anyone help?
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
If we let N stand for the set of all natural numbers, then we write 6N...
If we let N stand for the set of all natural numbers, then we write 6N for the set of natural numbers all multiplied by 6 (so 6N = {6, 12, 18, 24, . . . }). Show that the sets N and 6N have the same cardinality by describing an explicit one-to-one correspondence between the two sets.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT