Question

Solve the non homogenous wave equation , Utt - c^2Uxx =1 , u(x,0) = sin (x)...

Solve the non homogenous wave equation , Utt - c^2Uxx =1 ,

u(x,0) = sin (x) , Ut(x,0) = 1+x

(PDE)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x 2) U(x,0) = x^3 , Ut(x,0) =sinx (PDE)
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0)...
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0) = sin2x, 0<x<pi
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sin2x - sin3x, ut(x,0) = 0
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinxcosx, ut(x,0) = x(pi - x)
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < L,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < L, t > 0, u(0,t) = 0 = u(L,t), u(x,0) = x(L - x)2, ut(x,0) = 0
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) =...
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) = u(3π, t) = 0 u(x, 0) = sin(x/3) ut (x, 0) = 4 sin(x/3) − 6 sin(x) 9. Find the solution of the following PDE: utt − uxx = 0 u(0, t) = u(1, t) = 0 u(x, 0) = 0 ut(x, 0) = x(1 − x) 10. Find the solution of the following PDE: (1/2t+1)ut − uxx = 0 u(0,t) = u(π,t) =...
Find a solution u(x, t) of the following problem utt = 2uxx, 0 ≤ x ≤...
Find a solution u(x, t) of the following problem utt = 2uxx, 0 ≤ x ≤ 2 u(0, t) = u(2, t) = 0 u(x, 0) = 0, ut(x, 0) = sin πx − 2 sin 3πx.
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x...
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x < π u(x, 0) = sin(x), ut(x, 0) = 0 u(0, t) = 1, u(π, t) = 0. Your solution should be in the form of Fourier series. Write down the formulas that determine the coefficients in the Fourier series but do not evaluate the integrals
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the...
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the form of Fourier series : 1. Utt = Uxx ; u( t,0) = u(t,phi) = 0 ; u(0,x)=1 , Ut( (0,x) = 0 2. Utt = 4Uxx ; u( t,0) = u(t,1) = 0 ; u(0,x)=x , Ut( (0,x) = -x
Solve the BVP for the wave equation ∂^2u/∂t^2(x,t)=∂^2u/∂x^2(x,t),  0 < x < pi, t > 0 u(0,t)=0,...
Solve the BVP for the wave equation ∂^2u/∂t^2(x,t)=∂^2u/∂x^2(x,t),  0 < x < pi, t > 0 u(0,t)=0, u(pi,t)=0,  ? > 0, u(0,t)=0,  u(pi,t)=0,  t>0, u(x,0)= sin(x)cos(x), ut(x,0)=sin(x), 0 < x < pi