Question

it can be shown that y1=x^(−2), y2=x^(−5) and  y3=2 are solutions to the differential equation x^2D^3y+10xD^2y+18Dy=0 on...

it can be shown that y1=x^(−2), y2=x^(−5) and  y3=2 are solutions to the differential equation x^2D^3y+10xD^2y+18Dy=0 on (0,∞)

What does the Wronskian of y1,y2,y3 equal?

W(y1,y2,y3) =

Is {y1,y2,y3} a fundamental set for x^2D^3y+10xD^2y+18Dy=0 on (0,∞) ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
if y1 and y2 are linearly independent solutions of t^2y'' + 3y' + (2 + t)y...
if y1 and y2 are linearly independent solutions of t^2y'' + 3y' + (2 + t)y = 0 and if W(y1,y2)(1)=3, find W(y1,y2)(3). ROund your answer to the nearest decimal.
Two solutions to the differential equation y00 + 2y0 + y = 0 are y1(t) =...
Two solutions to the differential equation y00 + 2y0 + y = 0 are y1(t) = e−t and y2(t) = te−t. Verify that y1(t) is a solution and show that y1,y2 form a fundamental set of solutions by computing the Wronskian
given that y1=xcos(lnx)and y2=xsin(lnx)form a fundamental set of solutions to x^2y''-xy'+2y=0,find general solution to x^2y''-xy'+2y=xlnx
given that y1=xcos(lnx)and y2=xsin(lnx)form a fundamental set of solutions to x^2y''-xy'+2y=0,find general solution to x^2y''-xy'+2y=xlnx
Let y1 and y2 be two solutions of the equation y'' + a(t)y' + b(t)y =...
Let y1 and y2 be two solutions of the equation y'' + a(t)y' + b(t)y = 0 and let W(t) = W(y1, y2)(t) be the Wronskian. Determine an expression for the derivative of the Wronskian with respect to t as a function of the Wronskian itself.
Consider the differential equation: 66t^2y''+12t(t-11)y'-12(t-11)y=5t^3, . You can verify that y1 = 5t and y2 =...
Consider the differential equation: 66t^2y''+12t(t-11)y'-12(t-11)y=5t^3, . You can verify that y1 = 5t and y2 = 4te^(-2t/11)satisfy the corresponding homogeneous equation. The Wronskian W between y1 and y2 is W(t) = (-40/11)t^2e^((-2t)/11) Apply variation of parameters to find a particular solution. yp = ?????
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0....
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0. (a) Check that y1(t) = t −1 is a solution to this equation. (b) Find another solution y2(t) such that y1(t) and y2(t) are linearly independent (that is, y1(t) and y2(t) form a fundamental set of solutions for the differential equation)
Consider the differential equation x^2y′′ − 3xy′ − 5y = 0. Note that this is not...
Consider the differential equation x^2y′′ − 3xy′ − 5y = 0. Note that this is not a constant coefficient differential equation, but it is linear. The theory of linear differential equations states that the dimension of the space of all homogeneous solutions equals the order of the differential equation, so that a fundamental solution set for this equation should have two linearly fundamental solutions. • Assume that y = x^r is a solution. Find the resulting characteristic equation for r....
Given that y1 = t, y2 = t 2 are solutions to the homogeneous version of...
Given that y1 = t, y2 = t 2 are solutions to the homogeneous version of the nonhomogeneous DE below, verify that they form a fundamental set of solutions. Then, use variation of parameters to find the general solution y(t). (t^2)y'' - 2ty' + 2y = 4t^2 t > 0
Differential Equations problem If y1= e^-x is a solution of the differential equation y'''-y''+2y=0 . What...
Differential Equations problem If y1= e^-x is a solution of the differential equation y'''-y''+2y=0 . What is the general solution of the differential equation?
B. a non-homogeneous differential equation, a complementary solution, and a particular solution are given. Find a...
B. a non-homogeneous differential equation, a complementary solution, and a particular solution are given. Find a solution satisfying the given initial conditions. y''-2y'-3y=6 y(0)=3 y'(0) = 11 yc= C1e-x+C2e3x yp = -2 C. a third-order homogeneous linear equation and three linearly independent solutions are given. Find a particular solution satisfying the given initial conditions y'''+2y''-y'-2y=0, y(0) =1, y'(0) = 2, y''(0) = 0 y1=ex, y2=e-x,, y3= e-2x
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT