Question

Consider the two vector-functions listed below. Justify your answers for each question. x1(t) = [t, 2t]...

Consider the two vector-functions listed below. Justify your answers for each question.

x1(t) = [t, 2t] and x2(t) = [t , t^2]

(a) Are the vector-functions x1(t) and x2(t) linearly independent on the interval (−∞,∞)?
(b) Does there exist a point t0 such that the constant vectors x1(t0) and x2(t0) are linearly dependent?

(c) Can the vector-functions x1(t) and x2(t) be solutions to a first-order homogeneous linear system?

DIFF. EQUATIONS

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the two vector valued functions x1(t) = (2e^t , 3) and x1(t) = (4, 6e^-t...
Consider the two vector valued functions x1(t) = (2e^t , 3) and x1(t) = (4, 6e^-t ). For any given fixed value t0, show that the two dimensional vectors x1(t0) and x2(t0) are linearly dependent. At the same time, show that x1 and x2 as functions of t are linearly independent.
1. If x1(t) and x2(t) are solutions to the differential equation x" + bx' + cx...
1. If x1(t) and x2(t) are solutions to the differential equation x" + bx' + cx = 0 is x = x1 + x2 + c for a constant c always a solution? Is the function y= t(x1) a solution? Show the works 2. Write sown a homogeneous second-order linear differential equation where the system displays a decaying oscillation.
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2,...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2, and ?S is the subset of ?2P2 consisting of all polynomials of the form ?(?)=?2+?.p(x)=x2+c. B. ?=?5(?)V=C5(I), and ?S is the subset of ?V consisting of those functions satisfying the differential equation ?(5)=0.y(5)=0. C. ?V is the vector space of all real-valued functions defined on the interval [?,?][a,b], and ?S is the subset of ?V consisting of those functions satisfying ?(?)=?(?).f(a)=f(b). D. ?=?3(?)V=C3(I), and...
Solve each item supporting your answer with clear expalanation. 1. Consider the dynamical system x1(t +...
Solve each item supporting your answer with clear expalanation. 1. Consider the dynamical system x1(t + 1) = 0.1x1(t) + 0.2x2(t) + 1 x2(t + 1) = 0.4x1(t) + 0.3x2(t) + 2 a. Find the closed formula for the vector x(t). b. Find the equilibrium state of this system and determine its stability.
Solve each item supporting your answer with a clear explanation. 1. Consider the dynamical system x1(t...
Solve each item supporting your answer with a clear explanation. 1. Consider the dynamical system x1(t + 1) = 0.1x1(t) + 0.2x2(t) + 1 x2(t + 1) = 0.4x1(t) + 0.3x2(t) + 2 a. Find the closed formula for the vector x(t). b. Find the equilibrium state of this system and determine its stability.
1) State the main difference between an ODE and a PDE? 2) Name two of the...
1) State the main difference between an ODE and a PDE? 2) Name two of the three archetypal PDEs? 3) Write the equation used to compute the Wronskian for two differentiable functions, y1 and y2. 4) What can you conclude about two differentiable functions, y1 and y2, if their Wronskian is nonzero? 5) (2 pts) If two functions, y1 and y2, solve a 2nd order DE, what does the Principle of Superposition guarantee? 6) (8 pts, 4 pts each) State...