Question

Find Eigenvalues and Eigenspaces for matrix: The 2 × 2 matrix AT associated to the linear...

Find Eigenvalues and Eigenspaces for matrix:

The 2 × 2 matrix AT associated to the linear transformation T : R2 → R2 which rotates a vector π/4-radians then reflects it about the x-axis.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a vector (x1, x2) about the x2-axis. (b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a vector (x1, x2) counterclockwise by 135 degrees. (c) Find a linear transformation (with domain and codomain) that has the effect of first reflecting as in (a) and then rotating as in (b). Give the...
Find the matrix of the linear transformation which reflects every vector across the y-axis and then...
Find the matrix of the linear transformation which reflects every vector across the y-axis and then rotates every vector through the angle π/3.
Find the standard matrix for the linear transformation f(a, b, c, d)=(b-c+d, 2b-3d). Find the standard...
Find the standard matrix for the linear transformation f(a, b, c, d)=(b-c+d, 2b-3d). Find the standard matrix for the linear transformation that flips the xy plane over the y axis and rotates it by π/4 radians CCW.
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T:...
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T: R2 -> R3 first rotate point through (pie)/2 radian (counterclock-wise) and then reflects points through the horizontal x-axis b) Use part a to find the image of point (1,1) under the transformation T Please explain as much as possible. This was a past test question that I got no points on. I'm study for the final and am trying to understand past test questions.
Can someone explain linear transformations which rotates vectors by certain degrees? Examples: R^3--> R^3: A linear...
Can someone explain linear transformations which rotates vectors by certain degrees? Examples: R^3--> R^3: A linear transformation which rotates vectors 90 degrees about the x axis/y axis/z-axis (how would the matrix look if about a different axis) what if it rotates 180 degrees? R^2-->R^2?
Determine whether or not the transformation T is linear. If the transformation is linear, find the...
Determine whether or not the transformation T is linear. If the transformation is linear, find the associated representation matrix (with respect to the standard basis). (a) T ( x , y ) = ( y , x + 2 ) (b) T ( x , y ) = ( x + y , 0 )
LINEAR ALGEBRA For the matrix B= 1 -4 7 -5 0 1 -4 3 2   ...
LINEAR ALGEBRA For the matrix B= 1 -4 7 -5 0 1 -4 3 2    -6 6    -4 Find all x in R^4 that are mapped into the zero vector by the transformation Bx. Does the vector: 1 0 2 belong to the range of T? If it does, what is the pre-image of this vector?
. In this question we will investigate a linear transformation F : R 2 → R...
. In this question we will investigate a linear transformation F : R 2 → R 2 which is defined by reflection in the line y = 2x. We will find a standard matrix for this transformation by utilising compositions of simpler linear transformations. Let Hx be the linear transformation which reflects in the x axis, let Hy be reflection in the y axis and let Rθ be (anticlockwise) rotation through an angle of θ. (a) Explain why F =...