Question

Prove that a group G of order 210 has a subgroup of order 14 using Sylow's...

Prove that a group G of order 210 has a subgroup of order 14 using Sylow's theorem, and please be detailed in your proof. I have tried this multiple times but I keep getting stuck.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a finite group. There are 2 ways of getting a subgroup of G,...
Let G be a finite group. There are 2 ways of getting a subgroup of G, which are {e} and G. Now, prove the following : If |G|>1 is not prime, then G has a subgroup other than the 2 groups which are mentioned in the above.
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
A group G is a simple group if the only normal subgroups of G are G...
A group G is a simple group if the only normal subgroups of G are G itself and {e}. In other words, G is simple if G has no non-trivial proper normal subgroups. Algebraists have proven (using more advanced techniques than ones we’ve discussed) that An is a simple group for n ≥ 5. Using this fact, prove that for n ≥ 5, An has no subgroup of order n!/4 . (This generalizes HW5,#3 as well as our counterexample from...
Let G be a finite group and let H be a subgroup of order n. Suppose...
Let G be a finite group and let H be a subgroup of order n. Suppose that H is the only subgroup of order n. Show that H is normal in G. Hint: Consider the subgroup aHa-1 of G. Please explain in detail!
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G...
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5. Note, Sylow Theorem is above us so we can't use it. We're up to Finite Orders. Thank you.
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove that any proper subgroup (meaning a subgroup not equal to G itself) must be cyclic. Hint: what are the possible sizes of the subgroups?
Let H be a normal subgroup of G. Assume the quotient group G/H is abelian. Prove...
Let H be a normal subgroup of G. Assume the quotient group G/H is abelian. Prove that, for any two elements x, y ∈ G, we have x^ (-1) y ^(-1)xy ∈ H
Prove that A_4 (a group of order 4!//2 = 24/2 = 12) has no subgroup H...
Prove that A_4 (a group of order 4!//2 = 24/2 = 12) has no subgroup H of order 6 by showing: 1) all squares of elements A_4 must be H since (A_4:H) =2 2) All eight 3 -cycles are squares and hence must be in H.
3. Suppose G = <a> is a cyclic group of order 15 (i.e. a has order...
3. Suppose G = <a> is a cyclic group of order 15 (i.e. a has order 15), and consider the subgroup K = <a^3>. (a) Determine the order of K. (b) Use Lagrange’s theorem to determine the index of K in G, and then list the distinct cosets of K in G explicitly. (Hint: Consider the cosets Ke and Kb for b does not ∈K
Let G be a group of order 4. Prove that either G is cyclic or it...
Let G be a group of order 4. Prove that either G is cyclic or it is isomorphic to the Klein 4-group V4 = {1,(12)(34),(13)(24),(14)(23)}.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT