Question

The following data of the velocity of a body as a function of time is given....

The following data of the velocity of a body as a function of time is given.

Time (s)

0

15

18

22

24

Velocity (m/s)

22

24

26.8

37.2

123


The velocity in m/s at t = 16 seconds using quadratic polynomial interpolation is most nearly ____ (Keep 4 decimal points)

Homework Answers

Answer #1

please rate my answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. The data of the velocity of a body is given as a function of time...
3. The data of the velocity of a body is given as a function of time in the table below. ?(?) 0 15 18 ?(?) 22 24 37 a) Determine the value of ?(16) using linear splines. b) Determine the value of ?(16) using quadratic splines. c) The distance covered by the rocket from ? = 0 to ? = 16. d) The acceleration of the rocket at ? = 16.
An object is moving along the x-axis. It's x-velocity as a function of time is given...
An object is moving along the x-axis. It's x-velocity as a function of time is given by vx = 3 t2 - 2 t (which gives vx in meters for t in seconds). What is its displacement during the time interval from t = 2 s to t = 4 s? Answer Choices: 44 60 48 34 12
The acceleration of an object (in m/s2) is given by the function a(t)=6sin(t). The initial velocity...
The acceleration of an object (in m/s2) is given by the function a(t)=6sin(t). The initial velocity of the object is v(0)= −1 m/s. Round your answers to four decimal places. a) Find an equation v(t) for the object velocity. v(t)= -6cos(t)+5 b) Find the object's displacement (in meters) from time 0 to time 3. 15-6sin(3) Meters c) Find the total distance traveled by the object from time 0 to time 3. ? Meters Need Help fast, please
6. Given the velocity and initial position of a body moving along a coordinate line at...
6. Given the velocity and initial position of a body moving along a coordinate line at time t, find the body's position at time t. v = -13t + 2, s(0) = 10
Suppose that the position vector for a particle is given as a function of time by...
Suppose that the position vector for a particle is given as a function of time by vector r (t) = x(t)î + y(t)ĵ, with x(t) = at + b and y(t) = ct2 + d, where a = 1.90 m/s, b = 1.10 m, c = 0.128 m/s2, and d = 1.12 m. (a) Calculate the average velocity during the time interval from t = 2.05 s to t = 3.75 s. vector v = m/s (b) Determine the velocity...
“A butterfly flies along with a velocity vector given by v = (a-bt²) Î + (ct)...
“A butterfly flies along with a velocity vector given by v = (a-bt²) Î + (ct) ĵ where a=1.4 m/s, b=6.2 m/s³, and c=2.2 m/s². When t= 0 seconds, the butterfly is located at the origin. Calculate the butterfly’s position vector and acceleration vector as functions of time. What is the y-coordinate as it flies over x = 0 meters after t = 0 seconds?”
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the velocity of the particle as a function of time. ii) Determine the position of the particle as a function of time. (Explanation please )
The position of a car as a function of time is given by x = (50...
The position of a car as a function of time is given by x = (50 m) + (-5.0 m/s) t + (-10 m/s2) t2. a. What are the initial position, initial velocity, and acceleration of the car? b. What distance does the car travel during the first 1.0 s? c. What is the average velocity of the car between t = 1.0 s and t = 2.0 s?
The position of a car as a function of time is given by x = (50...
The position of a car as a function of time is given by x = (50 m) + (-5.0 m/s) t + (-10 m/s2) t2. a. What are the initial position, initial velocity, and acceleration of car? Answer: initial position ______ m; initial velocity _____ m/s; acceleration ______ m/s2 b. What distance does the car travel during the first 1.0 s? Answer:_____ m c. What is the average velocity of the car between t = 1.0 s and t =...
machine part has a 1D velocity function of vx=(20.2 m/s ) - (2.26 m/s3 ) t2....
machine part has a 1D velocity function of vx=(20.2 m/s ) - (2.26 m/s3 ) t2. At t=0 s it has position x0 = 3.3 m . Part A At what time (in seconds) does the machine part reach it's maximum position? t = nothing s .