1. Let a,b,c,d be row vectors and form the matrix A whose rows
are a,b,c,d. If...
1. Let a,b,c,d be row vectors and form the matrix A whose rows
are a,b,c,d. If by a sequence of row operations applied to A we
reach a matrix whose last row is 0 (all entries are 0) then:
a. a,b,c,d are linearly dependent
b. one of a,b,c,d must be 0.
c. {a,b,c,d} is linearly independent.
d. {a,b,c,d} is a basis.
2. Suppose a, b, c, d are vectors in R4 . Then they form a...
1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form
lambda?I.
[[4.5,0][0,4.5]] [[5.5,0][0,5.5]] [[4,0][0,4]] [[3.5,0][0,3.5]] [[5,0][0,5]] [[1.5,0][0,1.5]]
2. Find the orthogonal projection of the matrix
[[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace
0.
[[-1,3][3,1]] [[1.5,1][1,-1.5]] [[0,4][4,0]] [[3,3.5][3.5,-3]] [[0,1.5][1.5,0]] [[-2,1.5][1.5,2]] [[0.5,4.5][4.5,-0.5]] [[-1,6][6,1]] [[0,3.5][3.5,0]] [[-1.5,3.5][3.5,1.5]]
3. Find the orthogonal projection of the matrix
[[1,5][1,2]] onto the space of anti-symmetric 2x2
matrices.
[[0,-1] [1,0]] [[0,2] [-2,0]] [[0,-1.5]
[1.5,0]] [[0,2.5] [-2.5,0]] [[0,0]
[0,0]] [[0,-0.5] [0.5,0]] [[0,1] [-1,0]]
[[0,1.5] [-1.5,0]] [[0,-2.5]
[2.5,0]] [[0,0.5] [-0.5,0]]
4. Let p be the orthogonal projection of
u=[40,-9,91]T onto the...
5. Suppose A is an n × n matrix, whose entries are all real
numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real
numbers, that has n distinct real eigenvalues. Explain why R n has
a basis consisting of eigenvectors of A. Hint: use the “eigenspaces
are independent” lemma stated in class.
6. Unlike the previous problem, let A be a 2 × 2 matrix, whose
entries are all real numbers, with only 1 eigenvalue λ. (Note: λ
must be real, but don’t worry about why this is true)....