Question

1. Let A be the 2x2 matrix in M_{2x2}(C), whose first row is (0,1) and second...

1. Let A be the 2x2 matrix in M_{2x2}(C), whose first row is (0,1) and second row is (-1,0).

(a) Show that A is normal.

(b) Find (complex) eigenvalues of A.

(c) Find an orthogonal basis for C^2, which consists of eigenvectors of A.

(d) Find an orthonormal basis for C^2, which consists of eigenvectors of A.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let a,b,c,d be row vectors and form the matrix A whose rows are a,b,c,d. If...
1. Let a,b,c,d be row vectors and form the matrix A whose rows are a,b,c,d. If by a sequence of row operations applied to A we reach a matrix whose last row is 0 (all entries are 0) then:        a. a,b,c,d are linearly dependent   b. one of a,b,c,d must be 0.       c. {a,b,c,d} is linearly independent.       d. {a,b,c,d} is a basis. 2. Suppose a, b, c, d are vectors in R4 . Then they form a...
Let A be a 2x2 matrix and suppose that det(A)=3. For each of the following row...
Let A be a 2x2 matrix and suppose that det(A)=3. For each of the following row operations, determine the value of det(B), where B is the matrix obtained by applying that row operation to A. a) Multiply row 1 by -4 b) Add 4 times row 2 to row 1 c) Interchange rows 2 and 1 Resulting values for det(B): a) det(B) = b) det(B) = c) det(B) =
Let A be a 2x2 matrix 6 -3 -4 2 first, find all vectors V so...
Let A be a 2x2 matrix 6 -3 -4 2 first, find all vectors V so the distance between AV and the unit basis vector e_1 is minimized, call this set of all vectors L. Second, find the unique vector V0 in L such that V0 is orthogonal to the kernel of A. Question: What is the x-coordinate of the vector V0 equal to. ?/? (the answer is a fraction which the sum of numerator and denominator is 71)
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row...
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row 1(a b) row 2 (0 a) | a in R*, b in R} (a) Prove that G is a subgroup of GL(2,R) (b) Prove that G is Abelian
U is a 2×2 orthogonal matrix of determinant −1 . Find 37⋅[0,1]⋅U if 37⋅[1,0]⋅U=[35,12].
U is a 2×2 orthogonal matrix of determinant −1 . Find 37⋅[0,1]⋅U if 37⋅[1,0]⋅U=[35,12].
Let A equal the 2x2 matrix: [1 -2] [2 -1] and let T=LA R2->R2. (Notice that...
Let A equal the 2x2 matrix: [1 -2] [2 -1] and let T=LA R2->R2. (Notice that this means T(x,y)=(x-2y,2x-y), and that the matrix representation of T with respect to the standard basis is A.) a. Find the matrix representation [T]BB where B={(1,1),(-1,1)} b. Find an invertible 2x2 matrix Q so that [T]B = Q-1AQ
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
Let C = column matrix [1 2 3 1] and D = row matrix[−1 2 1...
Let C = column matrix [1 2 3 1] and D = row matrix[−1 2 1 4] . Prove that (CD)^10 is the same as C(DC)^9D and do the calculation by hand.
1. Two dice are tossed in a row. Let X be the outcome of the first...
1. Two dice are tossed in a row. Let X be the outcome of the first die, and let Y be the outcome of the second die. Let A be the event that X + Y ≤ 7, and let B be the event that X − Y ≥ 2. (a) Find P(A). (b) Find P(B). (c) Find P(A ∩ B). (d) Are A and B independent?