Question

Let G=Z x Z and H={ (a, b) in Z x Z | 8 divides (a+b)...

Let G=Z x Z and H={ (a, b) in Z x Z | 8 divides (a+b) }.

1. Prove that G/H is isomorphic to Z8.

2. What is the index of [G : H]? Explain.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let h € N be a prime. Now prove for all b € N, h divides...
Let h € N be a prime. Now prove for all b € N, h divides b^h -b.
Let a, b, and c be integers such that a divides b and a divides c....
Let a, b, and c be integers such that a divides b and a divides c. 1. State formally what it means for a divides c using the definition of divides 2. Prove, using the definition, that a divides bc.
Let H be a subgroup of G, and N be the normalizer of H in G...
Let H be a subgroup of G, and N be the normalizer of H in G and C be the centralizer of H in G. Prove that C is normal in N and the group N/C is isomorphic to a subgroup of Aut(H).
Let G be a group and D = {(x, x) | x ∈ G}. (a) Prove...
Let G be a group and D = {(x, x) | x ∈ G}. (a) Prove D is a subgroup of G. (b) Prove D ∼= G. (D is isomorphic to G)
Let G be a finite group and let H, K be normal subgroups of G. If...
Let G be a finite group and let H, K be normal subgroups of G. If [G : H] = p and [G : K] = q where p and q are distinct primes, prove that pq divides [G : H ∩ K].
Let h belong to H ≤ G; prove that hH=H=hH. and Let a, b ∈ G...
Let h belong to H ≤ G; prove that hH=H=hH. and Let a, b ∈ G = group and H ≤ G; prove that if aH = Hb, then aH = Ha and bH = Hb.
Let G = {x in R | x > 0 and x notequalto 1}. Define *...
Let G = {x in R | x > 0 and x notequalto 1}. Define * on G by a * b = aln(b). Prove that the multiplicative group Rx is isomorphic to G.
Let X ∼ Unif[−1, 1]. Consider the functions g, h : [−1, 1] → [−1, 1]...
Let X ∼ Unif[−1, 1]. Consider the functions g, h : [−1, 1] → [−1, 1] given by g(x) = 1 − x if x ∈ [0, 1]; x if x ∈ [−1, 0), and h(x) = x if x ∈ [0, 1]; −(x + 1) if x ∈ [−1, 0). Y = g(X) and Z = h(X) are both uniform Y, Z ∼ Unif[−1, 1]. (c) Prove that the random vectors (X, Y ) and (X, Z) do not...
Let X ∼ Unif[−1, 1]. Consider the functions g, h : [−1, 1] → [−1, 1]...
Let X ∼ Unif[−1, 1]. Consider the functions g, h : [−1, 1] → [−1, 1] given by g(x) = 1 − x if x ∈ [0, 1]; x if x ∈ [−1, 0), and h(x) = x if x ∈ [0, 1]; −(x + 1) if x ∈ [−1, 0). Y = g(X) and Z = h(X) are both uniform Y, Z ∼ Unif[−1, 1]. (c) Prove that the random vectors (X, Y ) and (X, Z) do not...
Let G be an abelian group, let H = {x in G | (x^3) = eg},...
Let G be an abelian group, let H = {x in G | (x^3) = eg}, where eg is the identity of G. Prove that H is a subgroup of G.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT